Extremal graph theory, Introduction

Miklós Simonovits

Moscow, 2015

Surveys introducl.tex

- My homepage: www.renyi.hu/~miki
— Erdős homepage: www.renyi.hu/ ~p_erdos
- The homepage of Alon, Füredi, ...
- Alon: Tools from higher algebra, in: "Handbook of Combinatorics", R.L. Graham, M. Grötschel and L. Lovász, eds, North Holland (1995), Chapter 32, pp. 1749-1783.
- Bollobás: Extremal Graph Theory (book)
- Bollobás: B. Bollobás: Extremal graph theory, in: R. L. Graham, M. Grötschel, and L. Lovász (Eds .), Handbook of Combinatorics, Elsevier Science, Amsterdam, 1995, pp. 1231-1292.
- Füredi-Simonovits: The history of degenerate (bipartite) extremal graph problems. Erdős centennial, 169-264, Bolyai Soc. Math. Stud., 25, Budapest, 2013.
- Simonovits: Extremal graph problems, Degenerate extremal problems and Supersaturated graphs, Progress in Graph Theory (Acad Press, ed. Bondy and Murty) (1984) 419-437.
- Simonovits: Paul Erdős' influence on extremal graph theory. The mathematics of Paul Erdős, II, 148-192, Algorithms Combin., 14, Springer, Berlin, 1997. (Updated now, 2014 Arxiv)
- M. Simonovits: How to solve a Turán type extremal graph problem? (linear decomposition), Contemporary trends in discrete mathematics (Stirin Castle, 1997), pp. 283-305, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, 1999.
- Keevash
- Kühn-Osthus
- Kohayakawa
- Schacht

These sources were chosen to suit to my lectures, many other very good sources are left out.

Introduction introducl.tex

Extremal graph theory and Ramsey theory were among the early and fast developing branches of 20th century graph theory. We shall survey the early development of Extremal Graph Theory, including some sharp theorems.
Strong interactions between these fields:
Here everything influenced everything

General Notation Introducl.tex

- $G_{n}, Z_{n, k}, T_{n, p}, H_{\nu} \ldots$ the (first) subscript n will almost always denote the number of vertices.
- $K_{p}=$ complete graph on p vertices,
- $P_{k} / C_{k}=$ path / cycle on k vertices.
- $\delta(x)$ is the degree of the vertex x.
- $v(G) / e(G)=\#$ of vertices / edges,
- $\delta(G)=$ mindeg, $\Delta(G)=$ maxdeg
- $\chi(G)=$ the chromatic number of G.
- $N(x)=$ set of neighbours of the vertex x, and
- $G[X]=$ the subgraph of G induced by X.
- $e(X, Y)=\#$ of edges between X and Y.

Special notation htrodacticl tex

Turán type extremal problems for simple (?) graphs

- Sample graph L, \mathcal{L}

$$
\operatorname{ex}(n, \mathcal{L})=\text { extremal number }=\max _{\substack{L \notin \mathcal{L} \\ \text { if } L \in \mathcal{L}}} e\left(G_{n}\right)
$$

- $\operatorname{EX}(\mathrm{n}, \mathcal{L})=$ extremal graphs.
- $\quad T_{n, p}=$ Turán graph, p-chromatic having most edges.

The Turán Graph

Application in combin. number theory mosTomsz.tex

Erdős (1938): \rightarrow ErdTomsk
Maximum how many integers $a_{i} \in[1, n]$ can be found under the condition: $a_{i} a_{j} \neq a_{k} a_{\ell}$, unless $\{i, j\}=\{k, \ell\}$?

This lead ERDŐs to prove:

$$
\operatorname{ex}\left(n, C_{4}\right) \leq c n \sqrt{n} .
$$

The first finite geometric construction to prove the lower bound (Eszter Klein)

Crooks tube

The primes between 1 and n satisfy Erdős' condition.
Can we conjecture

$$
g(n) \approx \pi(n) \approx \frac{n}{\log n} ?
$$

YES!
Proof idea: If we can produce each non-prome $m \in[1, n]$ as a product:

$$
m=x y, \text { where } x \in X, y \in Y
$$

then

$$
g(n) \leq \pi(n)+\operatorname{ex}_{B}\left(X, Y ; C_{4}\right) .
$$

where $\operatorname{ex}_{B}(U, V ; L)$ denotes the maximum number of edges in a subgraph of $G(U, V)$ without containing an L.

The number theoretical Lemma: MosTomzkex

Consider only integers. Let $\mathcal{P}=$ primes,

$$
\mathcal{B}:=\left[1, n^{2 / 3}\right] \bigcup\left[n^{2 / 3}, n\right] \cap \mathcal{P} \text { and } \mathcal{D}:=\left[1, n^{2 / 3}\right]
$$

Lemma (Erdős, 1938)

$$
[1, n] \subseteq \mathcal{B} \cdot \mathcal{D}=\left(\mathcal{B}_{1} \cdot \mathcal{D}\right) \cup\left(\mathcal{B}_{2} \cdot D\right)
$$

Lemma (Erdős, 1938)
Representing each $a_{i}=b_{i} d_{i}$, the obtained bipartite graph has no C_{4}.

$$
e\left(G\left(\mathcal{B}_{1}, \mathcal{D}\right)\right) \leq 3 m \sqrt{m}=3 n
$$

$$
\mathcal{B}_{2} \text { is joined only to }\left[1, n^{1 / 3}\right]:
$$

$$
e\left(G\left(\mathcal{B}_{2}, \mathcal{D}\right)\right) \leq \pi(n)+h^{2}
$$

$$
=\pi(n)+n^{2 / 3} .
$$

One of the important extremal graph theorems is that of Kővári, T. Sós and Turán,

Theorem (Kővári-T. Sós-Turán,
Let $K_{a, b}$ denote the complete bipartite graph with a and b vertices in its color-classes. Then

$$
\operatorname{ex}\left(n, K_{a, b}\right) \leq \frac{1}{2} \sqrt[a]{b-1} \cdot n^{2-(1 / a)}+O(n)
$$

We use this theorem with $a \leq b$, since that way we get a better estimate.

Conjecture

The above upper bound is sharp: For every $b \geq a>0$,

$$
\operatorname{ex}\left(n, K_{a, b}\right)>c_{a, b} n^{2-(1 / a)}+O(n)
$$

Is the exponent $2-(1 / a)$ sharp? MosDegener1.tex

Conjecture (KST is Sharp)

For every integers a, b,

$$
\operatorname{ex}(n, K(a, b))>c_{a, b} n^{2-1 / a}
$$

Known for $a=2$ and $a=3$: Erdős, Rényi, V. T. Sós, W. G. Brown

Random methods:
Finite geometric constructions
\rightarrow ErdRenyiSos
\rightarrow BrownThom
\rightarrow ErdRenyiEvol
\rightarrow ErdRenyiEvol

$$
\operatorname{ex}(n, K(a, b))>c_{a} n^{2-\frac{1}{a}-\frac{1}{b}}
$$

Füredi on $K_{2}(3,3)$:
Kollár-Rónyai-Szabó: $b>a$! .
Alon-Rónyai-Szabó: $b>(a-1)$!

The Brown construction is sharp. Commutative Algebra constr.

- Missing lower bounds: Constructions needed
- "Random constructions" do not seem to give the right order of magnitude when \mathcal{L} is finite

We do not even know if

$$
\frac{\operatorname{ex}(n, K(4,4))}{n^{5 / 3}} \rightarrow \infty
$$

- Partial reason for the bad behaviour:

Exercise Let the vertices of a graph be points in \mathbb{E}^{2} and join two points by an edge if their distance is 1 . Show that this graph contains no $K(2,3)$.

Exercise Let the vertices of a graph be points in \mathbb{E}^{3} and join two points by an edge if their distance is 1 . Show that this graph contains no $K(3,3)$.

Exercise If we take n points of general position in the d-dimensional Euclidean space (i.e., no d of them belong to a d - 1 -dimensional affine subspace) and join two of them if their distance is 1 , then the resulting graph G_{n} can not contain K_{d+2}.
Exercise If a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} are points in \mathbb{E}^{d} and all the pairwise distances $\rho\left(a_{i}, b_{j}\right)=1$, then the two affine subspaces defined by them are either orthogonal to each other or one of them reduces to one point.

Problems, Exercises, cont. MoszUnitisist.tex

Exercise Show that if we join two points in \mathbb{E}^{4} when their distance is 1 , then the resulting graph contains a $K(\infty, \infty)$.

Exercise Let $v=v(L)$. Prove that if we put more than $n^{1-(1 / v)}$ edges into some class of $T_{n, p}$ then the resulting graph contains L. Can you sharpen this statement?

Exercise (Petty's theorem) If we have n points in \mathbb{E}^{d} with an arbitrary metric $\rho(x, t)$ and its "unit distance graph" contains a K_{p} then $p \leq 2^{d}$. (Sharp for the d-dimensional cube and the ℓ_{1}-metric.)

Erdős on unit distances moszUnitist.tex

Many of the problems in the area are connected with the following beautiful and famous conjecture, motivated by some grid constructions.

Conjecture (P. Erdős)

For every $\varepsilon>0$ there exists an $n_{0}(\varepsilon)$ such that if $n>n_{0}(\varepsilon)$ and G_{n} is the Unit Distance Graph of a set of n points in \mathbb{E}^{2} then

$$
e\left(G_{n}\right)<n^{1+\varepsilon} .
$$

The cut lemma ${ }_{\text {Bipartower.tex }}$

Lemma

Erdős triviality Each G_{n} contains a bipartite subgraph H_{n} with $e\left(H_{n}\right)>\frac{1}{2} e\left(G_{n}\right)$.

Two proofs. Generalization

Why is the random method weak? Bipartower.tex

Let $\chi(L)=2, v:=v(L), e=e(L)$.

- The simple Random method (threshold) gives an L-free graph G_{n} with $\mathrm{cn}^{2-(v / e)}$ edges. For $C_{2 k}$ this is too weak.
- Improved method (first moment):

$$
c n^{2-\frac{v-2}{e-1}}
$$

For $C_{2 k}$ this yields

$$
c n^{2-\frac{2 k-2}{2 k-1}}=c n^{1+\frac{1}{2 k-1}} .
$$

Conjectured:

$$
\operatorname{ex}\left(n, C_{2 k}\right)>c n^{1+\frac{1}{k}}
$$

General Lower Bound

If a finite \mathcal{L} does not contain trees (or forests), then for some constants

$$
\begin{aligned}
c=c_{\mathcal{L}}>0, \alpha=\alpha_{\mathcal{L}}>0 & \\
& \operatorname{ex}(n, \mathcal{L})>c n^{1+\alpha} .
\end{aligned}
$$

Proof (Sketch).

- Discard the non-bipartite L's.
- Fix a large $k=k(\mathcal{L})$.
(E.g., $k=\max v(L)$.)
- We know ex $\left(n,\left\{C_{4}, \ldots, C_{2 k}\right\}\right)>c n^{2-\frac{v-2}{e-1}}$.
- Since each $L \in \mathcal{L}$ contains some $C_{2 \ell}(\ell \leq k)$,

$$
\operatorname{ex}(n, \mathcal{L}) \geq \operatorname{ex}\left(n, C_{4}, \ldots, C_{2 k}\right)>c n^{1+\frac{1}{2 k-1}}
$$

Constructions using finite geometries Bipartower.tex

$p \approx \sqrt{n}=\operatorname{prime}\left(n=p^{2}\right)$
Vertices of the graph F_{n} are pairs:
Edges: (a, b) is joined to (x, y) if
$(a, b) \bmod p$.

Geometry in the constructions: the neighbourhood is a straight line and two such nighbourhoods intersect in ≤ 1 vertex.

No $C_{4} \subseteq F_{n}$
loops to be deleted most degrees are around \sqrt{n} :

$$
e\left(F_{n}\right) \approx \frac{1}{2} n \sqrt{n}
$$

Finite geometries: Brown construction sipartower.tex

Vertices: $(x, y, z) \bmod p$
Edges:

$$
\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}=\alpha .
$$

$$
\operatorname{ex}(n, K(3,3))>\frac{1}{2} n^{2-(1 / 3)}+o(\ldots)
$$

The first missing case Bipartower.tex

The above methods do not work for $K(4,4)$.
We do not even know if

$$
\frac{\operatorname{ex}\left(n, K_{2}(4,4)\right)}{\operatorname{ex}\left(n, K_{2}(3,3)\right)} \rightarrow \infty
$$

One reason for the difficulty: Lenz construction:
\mathbb{E}^{4} contains two circles in two orthogonal planes:
$\mathcal{C}_{1}=\left\{x^{2}+y^{2}=\frac{1}{2}, z=0, w=0\right\}$ and $\mathcal{C}_{2}=\left\{z^{2}+w^{2}=\frac{1}{2}, x=0, y=0\right\}$
and each point of \mathcal{C}_{1} has distance 1 from each point of \mathcal{C}_{2} : the unit distance graph contains a $K_{2}(\infty, \infty)$.

Theorem (Erdős-Simonovits, Cube Theorem)
Let Q_{8} denote the cube graph defined by the vertices and edges of a 3 -dimensional cube. Then

$$
\operatorname{ex}\left(n, Q_{8}\right)=O\left(n^{8 / 5}\right) .
$$

Exponents? MosDegenerate2.tex

Conjecture (Erdős and Simonovits, Rational exponents)

For any finite family \mathcal{L} of graphs, if there is a bipartite $L \in \mathcal{L}$, then there exist a rational $\alpha \in[0,1)$ and a $c>0$ such that

$$
\frac{\operatorname{ex}(n, \mathcal{L})}{n^{1+\alpha}} \rightarrow c
$$

Classification of extremal graph problems and lower bound constructions moskraflatex

- The asymptotic structure of extremal graphs
- Degenerate extremal graph problems:
- \mathcal{L} contains a bipartite L :
$-\operatorname{ex}(n, \mathcal{L})=o\left(n^{2}\right)$.
- Lower bounds using random graphs and finite geometries:
- Here random methods are weak
- Finite geometry sometimes gives sharp results.

The Erdős-Stone theorem (1946) Moszkerfa. ax

$$
\mathbf{e x}\left(n, K_{p+1}(t, \ldots, t)\right)=\mathbf{e x}\left(n, K_{p+1}\right)+o\left(n^{2}\right)
$$

Motivation from topology

General asymptotics moskweflatex

Erdős-Stone-Sim.

If

$$
\min _{L \in \mathcal{L}} \chi(L)=p+1
$$

then

$$
\operatorname{ex}(n, \mathcal{L})=\left(1-\frac{1}{p}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

So the asymptotics depends only on the

$$
\operatorname{ex}(n, \mathcal{L})=\operatorname{ex}\left(n, K_{p+1}\right)+o\left(n^{2}\right)
$$

How to prove this from Erdős-Stone?

- pick $L \in \mathcal{L}$ with $\chi(L)=p+1$.
- pick t with $L \subseteq K_{p+1}(t, \ldots, t)$.
- apply ERdŐs-Stone:

$$
e x(n, \mathcal{L}) \geq e\left(T_{n, p}\right)
$$

but

$$
\begin{aligned}
\operatorname{ex}(n, \mathcal{L}) \leq \operatorname{ex}(n, L) & \leq \operatorname{ex}\left(n, K_{p+1}(t, \ldots, t)\right) \\
& \leq e\left(T_{n, p}\right)+\varepsilon n^{2}
\end{aligned}
$$

Classification of extremal problems moszmeflatatex

- nondegenerate:
- degenerate:
\mathcal{L} contains a bipartite L
- strongly degenerate:

$$
T_{\nu} \in \mathcal{M}(\mathcal{L})
$$

where \mathcal{M} is the decomposition family.

Main Line: Moszkvaflatex

Many central theorems
assert that for ordinary graphs the general situation is almost the same as for K_{p+1}.

Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

- The extremal graphs S_{n} are very similar to $T_{n, p}$.
- the almost extremal graphs are also very similar to $T_{n, p}$.

The meaning of "Very Similar":

- One can delete and add $o\left(n^{2}\right)$ edges of an extremal graph S_{n} to get a $T_{n, p}$.
- One can delete $o\left(n^{2}\right)$ edges of an extremal graph to get a p-chromatic graph.

Stability of the class sizes Moskvaflatex

Exercise Among all the n-vertex p-chromatic graphs $T_{n, p}$ is the (only) graph maximizing $e\left(T_{n, p}\right)$.
Exercise (Stability) If $\chi\left(G_{n}\right)=p$ and

$$
e\left(G_{n}\right)=e\left(T_{n, p}\right)-s
$$

then in a p-colouring of G_{n}, the size of the $i^{\text {th }}$ colour-class,

$$
\left|n_{i}-\frac{n}{p}\right|<c \sqrt{s+1}
$$

Exercise Prove that if n_{i} is the size of the $i^{\text {th }}$ class of $T_{n, p}$ and G_{n} is p-chromatic with class sizes m_{1}, \ldots, m_{p}, and if $s_{i}:=\left|n_{i}-m_{i}\right|$, then

$$
e\left(G_{n}\right) \leq e\left(T_{n, p}\right)-\sum\binom{s_{i}}{2} .
$$

Prove the assertion of the previous exercise from this.

Extremal graphs Moseswaflatex

The "metric" $\rho\left(G_{n}, H_{n}\right)$ is the minimum number of edges to change to get from G_{n} a graph isomorphic to H_{n}.

Notation.
$\operatorname{EX}(\mathbf{n}, \mathcal{L})$: set of extremal graphs for \mathcal{L}.

Theorem (Erdős-Sim., 1966)
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

If $S_{n} \in \operatorname{EX}(\mathbf{n}, \mathcal{L})$, then

$$
\rho\left(T_{n, p}, S_{n}\right)=o\left(n^{2}\right) .
$$

Product conjecture moszkafla.tex

Theorem 1 separates the cases $p=1$ and $p>1$:

$$
\operatorname{ex}(n, \mathcal{L})=o\left(n^{2}\right) \Longleftrightarrow p=p(\mathcal{L})=1
$$

$$
p=1: \text { degenerate extremal graph problems }
$$

Conjecture (Sim.)

If

$$
\operatorname{ex}(n, \mathcal{L})>e\left(T_{n, p}\right)+n \log n
$$

and $S_{n} \in \operatorname{EX}(\mathbf{n}, \mathcal{L})$, then S_{n} can be obtained from a $K_{p}\left(n_{1}, \ldots, n_{p}\right)$ only by adding edges.

This would reduce the general case to degenerate extremal graph problems:

Definition

Given the vertex-disjoint graphs H_{1}, \ldots, H_{p}, their product
$\prod_{i=1}^{p} H_{n_{i}}$ is the graph H_{n} obtained by joining all the vertices of $H_{n_{i}}$ to all vertices of $H_{n_{j}}$, for all $1 \leq i<j \leq p$.

Exercise Prove that if $\prod_{i=1}^{p} H_{n_{i}}$ is extremal for \mathcal{L} then $H_{n_{1}}$ is extremal for some \mathcal{M}_{1}. (Hint: Prove this first for $p=1$.) Redu

Definition (Decomposition)

M is a decomposition graph for \mathcal{L} if some $L \in \mathcal{L}$ can be
$p+1$-colored so that the first two colors span an M^{*} containing $M . \mathcal{M}=\mathcal{M}(\mathcal{L})$ is the family of decomposition graphs of \mathcal{L}.

Exercise Prove that if $\prod_{i=1}^{p} H_{n_{i}}$ is extremal for \mathcal{L} then $H_{n_{i}}$ is extremal for some $\mathcal{M}_{i} \subseteq \mathcal{M}$ and $p(\mathcal{M})=1$: the problem of \mathcal{M} is degenerate.

Example: Octahedron Theorem moszkvafla.tex

Theorem (Erdős-Sim.)

For O_{6}, the extremal graphs S_{n} are "products": $U_{m} \otimes W_{n-m}$ where U_{m} is extremal for C_{4} and W_{n-m} is extremal for P_{3}. for $n>n_{0} . \quad \rightarrow$ ErdSimOcta

Excluded: octahedron

EXTREMAL $=$ PRODUCT

Decomposition decides the error terms moskvafla.tex

Definition (Decomposition, alternative def.)

For a given $\mathcal{L}, \mathcal{M}:=\mathcal{M}(\mathcal{L}), \mathcal{M}$ is the family of all those graphs M for which there is an $L \in \mathcal{L}$ and a $t=t(L)$ such that $L \subseteq M \otimes K_{p-1}(t, \ldots, t)$.
We call \mathcal{M} the decomposition family of \mathcal{L}.

If B contains $a C_{4}$ then G_{n} contains an octahedron: $K(3,3,3)$.

The product conjecture, II. Moskvafla.tex

Conjecture (Product)

If no p-chromatic $L \in \mathcal{L}$ can be $p+1$-colored so that the first two color classes span a tree (or a forest) then all (or at least one of) the extremal graphs are products of p subgraphs of size $\approx \frac{n}{p}$.

Structural stability Moszkvaf1.tex

Erdős-Sim. Theorem.
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

For every $\varepsilon>0$ there is a $\delta>0$ such that if $L \nsubseteq G_{n}$ for any $L \in \mathcal{L}$ and

$$
e\left(G_{n}\right) \geq\left(1-\frac{1}{p}\right)\binom{n}{2}-\delta n^{2}
$$

then

$$
\rho\left(G_{n}, T_{n, p}\right) \leq \varepsilon n^{2}
$$

Erdős-Sim. Theorem
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

If G_{n} is almost extremal:

- It is \mathcal{L}-free, and

$$
e\left(G_{n}\right) \geq\left(1-\frac{1}{p}\right)\binom{n}{2}-o\left(n^{2}\right)
$$

then

$$
\rho\left(G_{n}, T_{n, p}\right)=o\left(n^{2}\right)
$$

Corollary
The almost extremal graphs are almost-p-colorable

Improved error terms, depending on \mathcal{M}.

Erdős-Sim. Theorem.
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1
$$

Let $\mathcal{M}=\mathcal{M}(\mathcal{L})$ be the decomposition family. Let $\operatorname{ex}(n, \mathcal{M})=$ $O\left(n^{2-\gamma}\right)$. Then, if G_{n} is almost extremal:

- It is \mathcal{L}-free, and

$$
e\left(G_{n}\right) \geq\left(1-\frac{1}{p}\right)\binom{n}{2}-O\left(n^{2-\gamma}\right)
$$

then we can delete $O\left(n^{2-\gamma}\right)$ edges from G_{n} to get a p-chromatic graph.

Remark

For extremal graphs $\rho\left(S_{n}, T_{n, p}\right)=O\left(n^{2-\gamma}\right)$.

Applicable and gives also exact results moskefili.ex

Examples:

Octahedron, Icosahedron, Dodecahedron, Petersen graph, Grötzsch

In all these cases the stability theorem yields exact structure for $n>n_{0}$.

Original proof of Turán's thm moskmefl.t.ex

- We may assume that $K_{p} \subseteq G_{n}$.
- We cut off K_{p}.
- We use induction on n (from $n-p$).

- We show the uniqueness

This "splitting off" method can be used to prove the structural stability and many other results. However, there we split of, say a large but fixed $K_{p}(M, \ldots, M)$.

Zykov's proof, 1949 Morzztwovpoot.t.ex

... and why do we like it?

Assume $\operatorname{deg}(x) \geq \operatorname{deg}(y)$.

Zykov's proof, 1949. Morzyuoproft.ex

Lemma. If $G_{n} \nsupseteq K_{\ell}$ and we symmetrize, the resulting graph will neither contain a K_{ℓ}.

We replace $N(x)$ by $N(y)$.

- Algorithmic proof
- Applicable in many cases
- Equivalent with Motzkin-Straus

How to use this?

We can use a parallel symmetrization.

- = max degree

Uniqueness?

- Füredi proved the stability for K_{p+1}, analyzing this proof: If there are many edges among the nonneighbours of the base x_{i} then we gain a lot.
- Prove exact results for special cases
- Prove good estimates for the bipartite case: $p=1$
- Clarify the situation for digraphs
- Prove reasonable results for hypergraphs
- Investigate fields where the problems have other forms, yet they are strongly related to these results.

Examples: 1. Critical edge moszweflctex

Theorem (Critical edge)

If $\chi(L)=p+1$ and L contains a color-critical edge, then $T_{n, p}$ is the (only) extremal for L, for $n>n_{1}$.

Sim., (Erdős)

Complete graphs Odd cycles

GRÖTZSCH GRAPH

We have to assume an upper bound s on the multiplicity. (Otherwise we may have arbitrary many edges without having a K_{3}.) Let $s=1$.

L:

$$
\operatorname{ex}(n, L)=2 \operatorname{ex}\left(n, K_{3}\right) \quad\left(n>n_{0} ?\right)
$$

Many extremal graphs: We can combine arbitrary many oriented double Turán graph by joining them by single arcs.

Example 3. The famous Turán conjecture

Consider 3-uniform hypergraphs.

Conjecture (Turán)

The following structure (on the left) is the (? asymptotically) extremal structure for $K_{4}^{(3)}$:

For $K_{5}^{(3)}$ one conjectured extremal graph is just the above

Examples: Degree Majorization Moskvaflc.tex

Erdős
For every K_{p+1}-free G_{n} there is a p-chromatic H_{n} with

$$
d_{H}\left(v_{i}\right) \geq d_{G}\left(v_{i}\right)
$$

(I.e the degrees in the new graph are at least as large as originally.)

Bollobás-Thomason, Erdős-T. Sós
If $e\left(G_{n}\right)>e\left(T_{n, p}\right)$ edges, then G_{n} has a vertex v with

$$
e(G[N(v)]) \geq \operatorname{ex}\left(d(v), K_{p}\right) .
$$

(I.e the neighbourhood has enough edges to ensure a K_{p}.)

Both generalize the Turán thm.

Application of symmetrization Moszoflctex

Exercise Prove that symetrization does not produce new complete graphs: if the original graph did not contain K_{ℓ}, the new one will neither. NN

Exercise Prove the degree-majorization theorem, using symmetrization. EM

Exercise (Bondy) Prove the Bollobás-Thomason- Erdős-T. Sós theorem, using symmetrization.

Exercise Is it true that if a graph does not contain C_{4} and you symmetrize, the new graph will neither contain a C_{4} ?

Examples: Moszkvaflctex

Prove that each triangle-free graph can be turned into a bipartite one deleting at most $n^{2} / 25$ edges.

The construction shows that this is sharp if true.
Partial results: ERDŐS-FAUDREE-Pach-Spencer

Erdős-GyőRi-Sim.
GYŐRI
FÜredi

Erdős-Sós conjecture moszkverrsostrees.tex

$$
\operatorname{ex}\left(n, T_{k}\right) \leq \frac{1}{2}(k-1) n
$$

Ajtai-Komlós-Sim.-Szemerédi: True if $k>k_{0}$.

Importance of Decomposition moszDecompzt.ex

This determines the real error terms in our theorems. E.g., if \mathcal{M} is the family of decomposition graphs.

$$
e\left(T_{n, p}\right)+\operatorname{ex}(n / p, \mathcal{M}) \leq \operatorname{ex}(n, \mathcal{L}) \leq e\left(T_{n, p}\right)+c \cdot \operatorname{ex}(n / p, \mathcal{M})
$$

for any $c>p$, and n large.

Exercise What is the decomposition class of K_{p+1} ?
Exercise What is the decomposition class of the octahedron graph $K_{3}(2,2,2)$? More generally, of $K(p, q, r)$?

Exercise What is the decomposition class of the Dodecahedron graph
D_{20} ? And of the icosahedron graph I_{12} ?

Definition

e is color-critical edge if $\chi(L-e)<\chi(L)$.
Theorem (Critical edge, (Sim.))
If $\chi(L)=p+1$ and L contains a color-critical edge, then $T_{n, p}$ is the (only) extremal for L, for $n>n_{1}$.

+ Erdős

Complete graphs

Odd cycles

Dodecahedron Theorem (Sim.) Mospecompz.tex

Dodecahedron: D_{20}

$H(n, d, s)$ graph for $n>n_{0}$.
$X H(n, 2,6)$ cannot contain a D_{20} since one can delete 5 points of $H(n, 2,6)$ to get a bipartite graph but one cannot delete 5 points from D_{20} to make it bipartite.)
$H(n .2 .6)$

Example 2: the Icosahedron mospocompzzex

If B contains $a P_{\boldsymbol{\theta}}$ then $G_{\boldsymbol{n}}$ contains an icosahedron
The decomposition class is: P_{6}.

Theorem (Cube, Erdős-Sim.)

$$
\operatorname{ex}\left(n, Q_{3}\right)=O\left(n^{8 / 5}\right) .
$$

New Proofs: Pinchasi-Sharir, Füredi, ...

- Take an arbitrary bipartite graph L and $K(t, t)$. 2-color them!
- join each vertex of $K(t, t)$ to each vertex of L of the opposite color

Theorem (Reduction, Erdős-Sim.)
Fix a bipartite L and an integer t.
If $\operatorname{ex}(n, L)=n^{2-\alpha}$ and $L(t)$ is defined as above then
$\operatorname{ex}(n, L(t)) \leq n^{2-\beta}$ for

$$
\frac{1}{\beta}-\frac{1}{\alpha}=t
$$

The ES reduction included many (most?) of the earlier upper bounds on bipartite L. Deleting an edge e of L, denote by $L-e$ the resulting graph.
Exercise Deduce the KST theorem from the Reduction Theorem. A
Exercise Show that ex $\left(n, Q_{8}-e\right)=O\left(n^{3 / 2}\right)$.
Exercise Show that ex $\left(n, K_{2}(p, p)-e\right)=O\left(n^{2-(1 / p)}\right)$.
Open Problem:
Find a lower bound for ex $\left(n, Q_{8}\right)$, better than $c n^{3 / 2}$.
Conjectured: $\quad \operatorname{ex}\left(n, Q_{8}\right)>c n^{8 / 5}$.

How to get ex $\left(n, Q_{8}\right)=O\left(n^{8 / 5}\right)$? moskweflatex

$Q_{8}=C_{6}(1)$. Apply
$\operatorname{ex}\left(n, C_{6}\right)=O\left(n^{2-(2 / 3)}\right)$ with $\alpha=2 / 3$,
$t=1$
Use the Reduction Thm:

$$
\frac{1}{\beta}-\frac{1}{\alpha}=t
$$

Now $\frac{1}{\beta}-\frac{1}{\alpha}=1$. So $\frac{1}{\beta}=1+\frac{3}{2}=\frac{5}{2}$. Hence $2-\beta=2-\frac{2}{5}=\frac{8}{5}$

What is left out?

The graph F_{11} below is full of C_{4} 's.

Erdős conjectured that ex $\left(n, F_{11}\right)=O\left(n^{3 / 2}\right)$. The methods known tose days did not give this. Füredi proved the conjecture.

The general definition: $\ln F_{1+k+\binom{k}{\ell}} w$ is joined to k vertices x_{1}, \ldots, x_{k}, and $\binom{k}{\ell}$ further vertices are joined to each ℓ-tuple $x_{i_{1}} \ldots x_{i \ell}$. $F_{11}=F_{1+4+\binom{4}{2}}$.

Theorem (Even Cycle: $C_{2 k}$)
$\operatorname{ex}\left(n, C_{2 k}\right)=O\left(n^{1+(1 / k)}\right)$.
More explicitly:

Theorem

Even Cycle: $\left.C_{2 k}\right)$. ex $\left(n, C_{2 k}\right) \leq c_{1} k n^{1+(1 / k)}$.
Conjecture (Sharpness)
Is this sharp, at least in the exponent? The simplest unknown case is C_{8},

It is sharp for C_{4}, C_{6}, C_{10}
Could you reduce k in $c_{1} k n^{1+(1 / k)}$?

Sketch of the proof: Mosemon,simimex

Lemma

If D is the average degree in G_{n}, then G_{n} contains a subgraph G_{m} with

$$
d_{\min }\left(G_{m}\right) \geq \frac{1}{2} D \text { and } m \geq \frac{1}{2} D .
$$

Exercise Can you improve this lemma?

- So we may assume that G_{n} is bipartite and regular. Assume also that it does not contain shorter cycles either.

Sketch of the proof: Expansion mosemondsim. tex

Start with cheating: girth $>2 k$:

- The i th level contains at least D^{i} different points.
- $D^{i}<n, i=1,2, \ldots k$.

So $D<n^{1 / k}$.

- $e\left(G_{n}\right) \leq c D n \leq \frac{1}{2} n^{1+1 / k}$.

We still have the difficulty that the shorter cycles cannot be trivially eliminate methods to overcome this:

- Bondy-Simonovits and
\rightarrow BondySim
- Faudree-Simonovits

Both proofs use Expansion: moszonousism.tex

x is a fixed vertex, S_{i} is the $i^{\text {th }}$ level, we need that

$$
\frac{\left|S_{i+1}\right|}{\left|S_{i}\right|}>c_{L} \cdot d_{\min }\left(G_{n}\right) \text { for } i=1, \ldots, k .
$$

This gives more:

$$
\operatorname{ex}\left(n, \Theta_{k, \ell}\right)=O\left(n^{1+(1 / k)}\right)
$$

An Erdős problem: Compactness? moszwefl.tex

We know that if G_{n} is bipartite, C_{4}-free, then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right)
$$

We have seen that there are C_{4}-free graphs G_{n} with

$$
e\left(G_{n}\right) \approx \frac{1}{2} n^{3 / 2}+o\left(n^{3 / 2}\right) .
$$

Conjecture (Erdős
Is it true that if $K_{3}, C_{4} \nsubseteq G_{n}$ then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right) ?
$$

This does not hold for hypergraphs (BALOGH) or for geometric graphs (Tardos)

Erdős-Sim., C_{5}-compactness: moskwefl.tex

If $C_{5}, C_{4} \nsubseteq G_{n}$ then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right)
$$

Unfortunately, this is much weaker than the conjecture on C_{3}, C_{4} : excluding a C_{5} is a much more restrictive condition.

Erdős-Gallai: Moskeof.t.ex

Faudree-Schelp Kopylov

Conjecture (Extremal number of the trees)

For any tree T_{k},

$$
\operatorname{ex}\left(n, T_{k}\right) \leq \frac{1}{2}(k-2) n .
$$

- Motivation: True for the two extreme cases: path and star.
- fight for $\frac{1}{2}$
- Partial results

Theorem (Andrew McLennan)
The Erdős-Sós conjecture holds for trees of diameter 4,

Theorem (Ajtai-Komlós-Sim.-Szemerédi)
If $k>k_{0}$ then true:

$$
\operatorname{ex}\left(n, T_{k}\right) \leq \frac{1}{2}(k-2) n .
$$

Which type of methods?

- Stability Method
- Double counting, Cauchy-Schwartz - Lovász-Szegedy, Hatami-Norine
- Random Graphs
- Finite Geometries:
- Klein, Reiman, Erdős-Rényi-Sós
- Erdős: ex $\left(n, C_{3}, \ldots, C_{2 k}\right)>c n^{1+\frac{1}{k}}$
- Eigenvalue questions / technique
- Guiduli, Babai, Nikiforov ... and many others?
- Szemerédi Regularity Lemma
- Quasi-randomness
- Simonovits-Sós
- Generalized quasi-randomness, Lovász-Sós-...

Lower bounds for degenerate cases moskvaf1.tex

- Why is the random method weak?
- Why is the Lenz construction important?
- Finite geometries
- Commutative algebra method
- Kollár-Rónyai-Szabó
- Alon-Rónyai-Szabó
- Margulis-Lubotzky-Phillips-Sarnak method
- Lazebnik-Ustimenko-Woldar
- Even cycle-extremal graphs

Rational exponents?

Conjecture (Rational exponents, Erdős-Sim.)
Given a bipartite graph L, is it true that for suitable $\alpha \in[0,1)$ there is a $c_{L}>0$ for which

$$
\frac{\operatorname{ex}(n, L)}{n^{1+\alpha}} \rightarrow c_{L}>0 \quad ?
$$

Or, at least, is it true that for suitable $\alpha \in[0,1)$ there exist a $c_{L}>0$ and a $c_{L}^{*}>0$ for which

$$
c_{1}^{*} \leq \frac{\operatorname{ex}(n, L)}{n^{1+\alpha}} \leq c_{L} \quad ?
$$

The Universe Morkwafitex

Extremal problems can be asked (and are asked) for many other object types.

- Mostly simple graphs
- Digraphs
- Multigraphs
- Hypergraphs
- Geometric graph
- Integers

- groups
- other structures

Given a universe, and a structure \mathbb{A} with two (natural parameters) n and e on its objects G.
Given a property \mathcal{P}.

$$
\operatorname{ex}(n, \mathcal{P})=\max _{n(G)=n} e(G)
$$

Determine ex (n, \mathcal{P}) and describe the EXTREMAL STRUCTURES

Examples: Hypergraphs, . . . Moskkaf1.tex

We return to this later.

Examples: Multigraphs, Digraphs, . . . Moszraffitiex

- Brown-Harary: bounded multiplicity: r
- Brown-Erdős-Sim.
$r=2 s$: digraph problems and multigraph problems seem to be equivalent:
- each multigraph problem can easily be reduced to digraph problems
- and we do not know digraph problems that are really more difficult than some corresponding multigraph problem
- Tomsk
- Sidon sequences

Let $r_{k}(n)$ denote the maximum m such that there are m integers $a_{1}, \ldots, a_{m} \in[1, n]$ without k-term arithmetic progression.

Theorem (Szemerédi Theorem)

For any fixed $k r_{k}(n)=o(n)$ as $n \rightarrow \infty$.

History (simplified):

- K. F. Roth: $r_{3}(n)=o(n)$
- Szemerédi
- Fürstenberg: Ergodic proof
- Fürstenberg-Katznelson: Higher dimension
- Polynomial extension, Hales-Jewett extension
- Gowers: much more effective

Extremal hypergraph graph theory,

Miklos Simonovits

Moscow, 2015

Hypergraph extremal problems moszhtreagtex

3-uniform hypergraphs: $\mathcal{H}=(V, \mathcal{H})$
$\chi(\mathcal{H})$: the minimum number of colors needed to have in each triple 2 or 3 colors.

Bipartite 3-uniform hypergraphs:

The edges intersect both classes

Three important hypergraph cases moszhtypegrt.ex

Complete 4-graph, || Fano configuration, || octahedron graph

Conjecture (Turán)

The following structure is the (? asymptotically) extremal structure for $K_{4}^{(3)}$:

For $K_{5}^{(3)}$ one conjectured extremal graph is just the above "complete bipartite" one!

Theorem (Kővári-T. Sós-Turán)
Let $2 \leq a \leq b$ be fixed integers. Then

Theorem (Erdős)

$$
\operatorname{ex}\left(n, K_{r}^{(r)}(m, \ldots, m)\right)=O\left(n^{r-\left(1 / m^{r-1}\right)}\right) .
$$

How to apply this?

Call a hypergraph extremal problem (for k-uniform hypergraphs) degenerate if

$$
\operatorname{ex}(n, \mathcal{L})=o\left(n^{k}\right) .
$$

Exercise Prove that the problem of L is degenerate iff it can be k-colored so at each edge meats each of the k colors.

The T. Sós conjecture moszkHyperg.tex

Conjecture (V. T. Sós)

Partition $n>n_{0}$ vertices into two classes A and B with $\|A|-| B\| \leq 1$ and take all the triples intersecting both A and B. The obtained 3 -uniform hypergraph is extremal for \mathcal{F}.

The conjectured extremal graphs: $\mathcal{B}(X, \bar{X})$

If M_{n} is an arbitrary multigraph (without restriction on the edge multiplicities, except that they are nonnegative) and all the 4-vertex subgraphs of M_{n} have at most 20 edges, then

$$
e\left(M_{m}\right) \leq 3\binom{n}{2}+O(n)
$$

Theorem (de Caen and Füredi)

$$
\operatorname{ex}(n, \mathcal{F})=\frac{3}{4}\binom{n}{3}+O\left(n^{2}\right)
$$

Main theorem. If \mathcal{H} is a triple system on $n>n_{1}$ vertices not containing \mathcal{F} and of maximum cardinality, then $\chi(\mathcal{H})=2$.

$$
\Longrightarrow \quad \operatorname{ex}_{3}(n, \mathcal{F})=\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-\binom{\lceil n / 2\rceil}{ 3} .
$$

Remark

The same result was proved independently, in a fairly similar way, by

Peter Keevash and Benny Sudakov \rightarrow Keesud

Theorem (Stability)

There exist a $\gamma_{2}>0$ and an n_{2} such that: If $\mathcal{F} \nsubseteq \mathcal{H}$ and

$$
\operatorname{deg}(x)>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2} \text { for each } x \in V(\mathcal{H})
$$

then \mathcal{H} is bipartite, $\mathcal{H} \subseteq \mathcal{H}(X, \bar{X})$.

Many thanks for your attention.

