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— My homepage: www.renyi.hu/˜miki
— Erdős homepage: www.renyi.hu/˜p erdos
— The homepage of Alon, Füredi, . . .

Alon: Tools from higher algebra, in : ”Handbook of
Combinatorics”, R.L. Graham, M. Grötschel and L. Lovász, eds, North
Holland (1995), Chapter 32, pp. 1749-1783.

Bollobás: Extremal Graph Theory (book)

Bollobás: B. Bollobás: Extremal graph theory, in: R. L. Graham,

M. Grötschel, and L. Lovász (Eds .), Handbook of Combinatorics,

Elsevier Science, Amsterdam, 1995, pp. 1231–1292.

Füredi-Simonovits: The history of degenerate (bipartite)

extremal graph problems. Erdős centennial, 169–264, Bolyai Soc. Math.

Stud., 25, Budapest, 2013.
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Simonovits: Extremal graph problems, Degenerate extremal
problems and Supersaturated graphs, Progress in Graph Theory (Acad
Press, ed. Bondy and Murty) (1984) 419–437.

Simonovits: Paul Erdős’ influence on extremal graph theory. The
mathematics of Paul Erdős, II, 148-192, Algorithms Combin., 14,
Springer, Berlin, 1997. (Updated now, 2014 Arxiv)

M. Simonovits: How to solve a Turán type extremal graph
problem? (linear decomposition), Contemporary trends in discrete
mathematics (Stirin Castle, 1997), pp. 283–305, DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI,
1999.

Keevash
Kühn-Osthus
Kohayakawa
Schacht

These sources were chosen to suit to my lectures, many other very good

sources are left out.
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Extremal graph theory and Ramsey theory were among the early and fast

developing branches of 20th century graph theory. We shall survey the

early development of Extremal Graph Theory, including some sharp

theorems.

Strong interactions
between these fields:
Here everything influenced
everything

Ramsey Theory

Random Graphs

Algebraic 
Constructions

Pseudo−random 
structures

Turan Theory
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General Notation Introduc1.tex 5

Gn, Zn,k , Tn,p, Hν ... the (first) subscript n will almost always
denote the number of vertices.

Kp = complete graph on p vertices,
Pk / Ck = path / cycle on k vertices.
δ(x) is the degree of the vertex x .
v(G ) / e(G ) = # of vertices / edges,
δ(G ) = mindeg, ∆(G ) = maxdeg
χ(G ) = the chromatic number of G .
N(x) = set of neighbours of the vertex x , and
G [X ]= the subgraph of G induced by X .
e(X ,Y ) = # of edges between X and Y .



Erdős-Stone-Simonovits thms Methods Hypergraphs

Special notation Introduc1.tex 6

Turán type extremal problems for simple (?) graphs

Sample graph L, L
ex(n,L) = extremal number = max

L 6⊆L

if L∈L

e(Gn).

EX(n,L) = extremal graphs.
Tn,p = Turán graph, p-chromatic having most edges.

The Turán Graph
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Application in combin. number theory MosTomszk.tex

7

Erdős (1938): → ErdTomsk

Maximum how many integers ai ∈ [1, n] can be found under the
condition: aiaj 6= akaℓ, unless {i , j} = {k , ℓ}?

This lead Erdős to prove:

ex(n,C4) ≤ cn
√
n.

The first finite geometric construction to prove the lower bound
(Eszter Klein)

Crooks tube
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First “attack”: MosTomszk.tex 8

The primes between 1 and n satisfy Erdős’ condition.

Can we conjecture g(n) ≈ π(n) ≈ n

log n
?

YES!

Proof idea: If we can produce each non-prome m ∈ [1, n] as a product:

m = xy , where x ∈ X , y ∈ Y ,

then
g(n) ≤ π(n) + exB(X ,Y ;C4).

where exB(U,V ; L) denotes the maximum number of edges in a

subgraph of G (U,V ) without containing an L.
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The number theoretical Lemma: MosTomszk.tex 9

Consider only integers. Let P = primes,

B := [1, n2/3]
⋃

[n2/3, n] ∩ P and D := [1, n2/3].

Lemma (Erdős, 1938)

[1, n] ⊆ B · D = (B1 · D) ∪ (B2 · D).

Lemma (Erdős, 1938)

Representing each ai = bidi , the obtained bipartite graph has no
C4.

bb 21 b

d7

3

d2d1

5 3 7a  = b d

n

m

h

e(G (B1,D)) ≤ 3m
√
m = 3n.

B2 is joined only to [1, n1/3]:
e(G (B2,D)) ≤ π(n) + h2

= π(n) + n2/3.
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Kővári – T. Sós – Turán MosDegener1.tex 10

One of the important extremal graph theorems is that of
Kővári, T. Sós and Turán, → KovSosTur

Theorem (Kővári–T. Sós–Turán, → KovSosTur )

Let Ka,b denote the complete bipartite graph with a and b vertices
in its color-classes. Then

ex(n,Ka,b) ≤
1

2
a
√
b − 1 · n2−(1/a) + O(n).

We use this theorem with a ≤ b, since that way we get a better
estimate.

Conjecture

The above upper bound is sharp: For every b ≥ a > 0,

ex(n,Ka,b) > ca,bn
2−(1/a) + O(n).
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Is the exponent 2− (1/a) sharp? MosDegener1.tex 11

Conjecture (KST is Sharp)

For every integers a, b,

ex(n,K (a, b)) > ca,b n
2−1/a.

Known for a = 2 and a = 3: Finite geometric constructions
Erdős, Rényi, V. T. Sós, → ErdRenyiSos

W. G. Brown → BrownThom

Random methods: → ErdRenyiEvol

ex(n,K (a, b)) > can
2− 1

a
−

1
b .

Füredi on K2(3, 3): The Brown construction is sharp.

Kollár-Rónyai-Szabó: b > a! . Commutative Algebra constr.

Alon-Rónyai-Szabó: b > (a− 1)! .
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Unknown: MosDegener1.tex 12

Missing lower bounds: Constructions needed

“Random constructions” do not seem to give the right
order of magnitude when L is finite

We do not even know if Pr1

ex(n,K (4, 4))

n5/3
→ ∞.

Partial reason for the bad behaviour:
Lenz Construction
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Problems, Exercises MoszUnitDist.tex 13

Exercise Let the vertices of a graph be points in E
2 and join two points

by an edge if their distance is 1. Show that this graph contains no
K (2, 3). 2

Exercise Let the vertices of a graph be points in E
3 and join two points

by an edge if their distance is 1. Show that this graph contains no
K (3, 3). 3

Exercise If we take n points of general position in the d-dimensional
Euclidean space (i.e., no d of them belong to a d − 1-dimensional affine
subspace) and join two of them if their distance is 1, then the resulting

graph Gn can not contain Kd+2. 4

Exercise If a1, . . . , ap and b1, . . . , bq are points in E
d and all the

pairwise distances ρ(ai , bj) = 1, then the two affine subspaces defined by
them are either orthogonal to each other or one of them reduces to one
point. 5
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Problems, Exercises, cont. MoszUnitDist.tex 14

Exercise Show that if we join two points in E
4 when their distance is 1,

then the resulting graph contains a K (∞,∞). 6

Exercise Let v = v(L). Prove that if we put more than n1−(1/v) edges
into some class of Tn,p then the resulting graph contains L. Can you

sharpen this statement? 7

Exercise (Petty’s theorem) If we have n points in E
d with an arbitrary

metric ρ(x , t) and its “unit distance graph” contains a Kp then p ≤ 2d .

(Sharp for the d-dimensional cube and the ℓ1-metric.) 8∗
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Erdős on unit distances MoszUnitDist.tex 15

Many of the problems in the area are connected with the following
beautiful and famous conjecture, motivated by some grid
constructions.

Conjecture (P. Erdős)

For every ε > 0 there exists an n0(ε) such that if n > n0(ε) and Gn

is the Unit Distance Graph of a set of n points in E
2 then

e(Gn) < n1+ε.
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The cut lemma BiparLower.tex 16

Lemma

Erdős triviality Each Gn contains a bipartite subgraph Hn with
e(Hn) >

1
2e(Gn).

Two proofs. Generalization
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Why is the random method weak? BiparLower.tex 17

Let χ(L) = 2, v := v(L), e = e(L).

The simple Random method (threshold) gives an L-free graph Gn

with cn2−(v/e) edges. For C2k this is too weak.

Improved method (first moment):

cn2−
v−2
e−1 .

For C2k this yields

cn2−
2k−2
2k−1 = cn1+

1
2k−1 .

Conjectured:

ex(n,C2k) > cn1+
1
k .
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Random method, General Case: BiparLower.tex 18

General Lower Bound

If a finite L does not contain trees (or forests), then for some con-
stants
c = cL > 0, α = αL > 0

ex(n,L) > cn1+α.

Proof (Sketch).
Discard the non-bipartite L’s.

Fix a large k = k(L). (E.g., k = max v(L).)

We know ex(n, {C4, . . . ,C2k}) > cn2−
v−2
e−1 .

Since each L ∈ L contains some C2ℓ (ℓ ≤ k),

ex(n,L) ≥ ex(n,C4, . . . ,C2k) > cn1+
1

2k−1 .
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Constructions using finite geometries BiparLower.tex 19

p ≈ √
n = prime (n = p2)

Vertices of the graph Fn are pairs: (a, b) mod p.
Edges: (a, b) is joined to (x , y) if ac + bx = 1 mod p.

Geometry in the constructions: the neighbourhood is a straight line and
two such nighbourhoods intersect in ≤ 1 vertex.

=⇒ No C4 ⊆ Fn
loops to be deleted
most degrees are around

√
n:

e(Fn) ≈ 1
2n

√
n
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Finite geometries: Brown construction BiparLower.tex

20

Vertices: (x , y , z) mod p

Edges:
(x − x ′)2 + (y − y ′)2 + (z − z ′)2 = α.

ex(n,K (3, 3)) >
1

2
n2−(1/3) + o(...).

→ BrownThom
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The first missing case BiparLower.tex 21

The above methods do not work for K (4, 4).

We do not even know if Pr2

ex(n,K2(4, 4))

ex(n,K2(3, 3))
→ ∞.

One reason for the difficulty: Lenz construction:

E
4 contains two circles in two orthogonal planes:

C1 = {x2+y2 =
1

2
, z = 0, w = 0} and C2 = {z2+w2 =

1

2
, x = 0, y = 0}

and each point of C1 has distance 1 from each point of C2: the unit
distance graph contains a K2(∞,∞).
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MosDegenerate2.tex 22

Theorem (Erdős–Simonovits, Cube Theorem)

Let Q8 denote the cube graph defined by the vertices and edges of
a 3-dimensional cube. Then

ex(n,Q8) = O(n8/5).
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Exponents? MosDegenerate2.tex 23

Conjecture (Erdős and Simonovits, Rational exponents)

For any finite family L of graphs, if there is a bipartite L ∈ L, then
there exist a rational α ∈ [0, 1) and a c > 0 such that

ex(n,L)
n1+α

→ c .
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Classification of extremal graph problems and

lower bound constructions MoszkvaF1a.tex 24

The asymptotic structure of extremal graphs

Degenerate extremal graph problems:
– L contains a bipartite L:
– ex(n,L) = o(n2).

Lower bounds using random graphs and finite geometries:
– Here random methods are weak
– Finite geometry sometimes gives sharp results.
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The Erdős-Stone theorem (1946) MoszkvaF1a.tex 25

ex(n,Kp+1(t, . . . , t)) = ex(n,Kp+1) + o(n2)

Motivation from topology
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General asymptotics MoszkvaF1a.tex 26

Erdős-Stone-Sim.

→ ErdSimLim

If
min
L∈L

χ(L) = p + 1

then

ex(n,L) =
(

1− 1

p

)(

n

2

)

+ o(n2).

So the asymptotics depends only on the

minimum chromatic number
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Erdős-Stone-Sim. thm MoszkvaF1a.tex 27

ex(n,L) = ex(n,Kp+1) + o(n2).

How to prove this from Erdős-Stone?
– pick L ∈ L with χ(L) = p + 1.
– pick t with L ⊆ Kp+1(t, . . . , t).
– apply Erdős-Stone:

ex(n,L) ≥ e(Tn,p)

but

ex(n,L) ≤ ex(n, L) ≤ ex(n,Kp+1(t, . . . , t))

≤ e(Tn,p) + εn2.
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Classification of extremal problems MoszkvaF1a.tex 28

nondegenerate: p > 1

degenerate: L contains a bipartite L

strongly degenerate: Tν ∈ M(L)

where M is the decomposition family.
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Main Line: MoszkvaF1a.tex 29

Many central theorems

assert that for ordinary graphs the general situation is almost the
same as for Kp+1.

Put
p := min

L∈L
χ(L)− 1.

The extremal graphs Sn are very similar to Tn,p.

the almost extremal graphs are also very similar to Tn,p.
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The meaning of “Very Similar”: MoszkvaF1a.tex 30

One can delete and add o(n2) edges of an extremal
graph Sn to get a Tn,p.

One can delete o(n2) edges of an extremal graph to get
a p-chromatic graph.
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Stability of the class sizes MoszkvaF1a.tex 31

Exercise Among all the n-vertex p-chromatic graphs Tn,p is the (only)

graph maximizing e(Tn,p). Tp1

Exercise (Stability) If χ(Gn) = p and

e(Gn) = e(Tn,p)− s

then in a p-colouring of Gn, the size of the i th colour-class,
∣

∣

∣

∣

ni −
n

p

∣

∣

∣

∣

< c
√
s + 1.

Tp2

Exercise Prove that if ni is the size of the i th class of Tn,p and Gn is
p-chromatic with class sizes m1, . . . ,mp, and if si := |ni −mi |, then

e(Gn) ≤ e(Tn,p)−
∑

(

si
2

)

.

Prove the assertion of the previous exercise from this. Tp2b
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Extremal graphs MoszkvaF1a.tex 32

The “metric” ρ(Gn,Hn) is the minimum number of edges to change
to get from Gn a graph isomorphic to Hn.

Notation.

EX(n,L): set of extremal graphs for L.

Theorem (Erdős-Sim., 1966)

Put
p := min

L∈L
χ(L)− 1.

If Sn ∈ EX(n,L), then

ρ(Tn,p, Sn) = o(n2).
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Product conjecture MoszkvaF1a.tex 33

Theorem 1 separates the cases p = 1 and p > 1:

ex(n,L) = o(n2) ⇐⇒ p = p(L) = 1

p = 1: degenerate extremal graph problems

Conjecture (Sim.)

If
ex(n,L) > e(Tn,p) + n log n

and Sn ∈ EX(n,L), then Sn can be obtained from a
Kp(n1, . . . , np) only by adding edges.

This would reduce the general case to degenerate extremal graph
problems:
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The product conjecture, Reduction MoszkvaF1a.tex 34

Definition

Given the vertex-disjoint graphs H1, . . . ,Hp, their product
∏p

i=1 Hni is the graph Hn obtained by joining all the vertices of Hni

to all vertices of Hnj , for all 1 ≤ i < j ≤ p.

Exercise Prove that if
∏p

i=1 Hni is extremal for L then Hn1 is

extremal for some M1. (Hint: Prove this first for p = 1.) Redu

Definition (Decomposition)

M is a decomposition graph for L if some L ∈ L can be

p + 1-colored so that the first two colors span an M∗ containing

M. M = M(L) is the family of decomposition graphs of L.

Exercise Prove that if
∏p

i=1 Hni is extremal for L then Hni is
extremal for some Mi ⊆ M and p(M) = 1: the problem of M is

degenerate. Redu2
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Example: Octahedron Theorem MoszkvaF1a.tex 35

Theorem (Erdős-Sim.)

For O6, the extremal graphs Sn are “products”: Um ⊗Wn−m where Um is
extremal for C4 and Wn−m is extremal for P3. for n > n0. → ErdSimOcta

=
Excluded: octahedron extremal = product
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Decomposition decides the error terms MoszkvaF1a.tex

36

Definition (Decomposition, alternative def.)

For a given L, M := M(L), M is the family of all those graphs
M for which there is an L ∈ L and a t = t(L) such that
L ⊆ M ⊗ Kp−1(t, . . . , t).
We call M the decomposition family of L.

A

B

If B contains a C , then G   contains
an octahedron: K(3,3,3).

n4
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The product conjecture, II. MoszkvaF1a.tex 37

Conjecture (Product)

If no p-chromatic L ∈ L can be p + 1-colored so that the first two
color classes span a tree (or a forest) then all (or at least one of)
the extremal graphs are products of p subgraphs of size ≈ n

p
.
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Structural stability MoszkvaF1b.tex 38

Erdős-Sim. Theorem.

Put
p := min

L∈L
χ(L)− 1.

For every ε > 0 there is a δ > 0 such that if L 6⊆ Gn for any L ∈ L
and

e(Gn) ≥
(

1− 1

p

)(

n

2

)

− δn2,

then
ρ(Gn,Tn,p) ≤ εn2
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Structural stability: o(.) form MoszkvaF1b.tex 39

Erdős-Sim. Theorem

Put
p := min

L∈L
χ(L)− 1.

If Gn is almost extremal:
It is L-free, and

e(Gn) ≥
(

1− 1

p

)(

n

2

)

− o(n2),

then
ρ(Gn,Tn,p) = o(n2).

Corollary

The almost extremal graphs are almost-p-colorable
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Improved error terms, depending on M.

MoszkvaF1b.tex 40

Erdős-Sim. Theorem.

Put
p := min

L∈L
χ(L)− 1.

Let M = M(L) be the decomposition family. Let ex(n,M) =
O(n2−γ). Then, if Gn is almost extremal:

It is L-free, and

e(Gn) ≥
(

1− 1

p

)(

n

2

)

− O(n2−γ),

then we can delete O(n2−γ) edges from Gn to get a p-chromatic
graph.

Remark

For extremal graphs ρ(Sn,Tn,p) = O(n2−γ).
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Applicable and gives also exact results MoszkvaF1b.tex

41

Examples:
Octahedron, Icosahedron, Dodecahedron, Petersen graph,

Grötzsch

1
2

1

22

2

1

3

3

3
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In all these cases the stability theorem yields exact structure for
n > n0.
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Original proof of Turán’s thm MoszkvaF1b.tex 42

We may assume that Kp ⊆ Gn.
We cut off Kp.
We use induction on n (from n − p).

G  −K

Kp

n p

Kp

G  −Kn p

We show the uniqueness

This “splitting off” method can be used to prove the structural stability

and many other results. However, there we split of, say a large but fixed

Kp(M, . . . ,M).
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Zykov’s proof, 1949 MoszZykovProof.tex 43

. . . and why do we like it?

yx

Assume deg(x) ≥ deg(y).
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Zykov’s proof, 1949. MoszZykovProof.tex 44

yx

We replace N(x) by N(y).

Lemma. If Gn 6⊇ Kℓ and we
symmetrize, the resulting graph
will neither contain a Kℓ.

Algorithmic proof
Applicable in many cases
Equivalent with Motzkin-Straus
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How to use this? MoszZykovProof.tex 45

We can use a parallel symmetrization.

= max degree

Uniqueness?

Füredi proved the stability for Kp+1, analyzing this proof:
If there are many edges among the nonneighbours of the base xi
then we gain a lot.



Erdős-Stone-Simonovits thms Methods Hypergraphs

Other directions MoszkvaF1c.tex 46

Prove exact results for special cases
Prove good estimates for the bipartite case: p = 1
Clarify the situation for digraphs
Prove reasonable results for hypergraphs

Investigate fields where the problems have other forms, yet
they are strongly related to these results.
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Examples: 1. Critical edge MoszkvaF1c.tex 47

Theorem (Critical edge)

If χ(L) = p + 1 and L contains a color-critical edge, then Tn,p is
the (only) extremal for L, for n > n1. [If and only if]

Sim., (Erdős)

Grötzsch graphComplete graphs
Odd cycles
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Examples: 2. A digraph theorem MoszkvaF1c.tex 48

We have to assume an upper bound s on the multiplicity. (Otherwise we

may have arbitrary many edges without having a K3.) Let s = 1.

L:

ex(n, L) = 2ex(n,K3) (n > n0?)

Many extremal graphs: We can combine arbitrary many

oriented double Turán graph by joining them by single arcs.
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Example 3. The famous Turán conjecture

MoszkvaF1c.tex 49

Consider 3-uniform hypergraphs.

Conjecture (Turán)

The following structure (on the left) is the (? asymptotically)

extremal structure for K
(3)
4 :

For K
(3)
5 one conjectured extremal graph is just the above

“complete bipartite” one (on the right)!
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Examples: Degree Majorization MoszkvaF1c.tex 50

Erdős

For every Kp+1-free Gn there is a p-chromatic Hn with

dH(vi ) ≥ dG (vi ).

(I.e the degrees in the new graph are at least as large as originally.)

Bollobás-Thomason, Erdős-T. Sós

If e(Gn) > e(Tn,p) edges, then Gn has a vertex v with

e(G [N(v)]) ≥ ex(d(v),Kp).

(I.e the neighbourhood has enough edges to ensure a Kp.)

Both generalize the Turán thm.
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Application of symmetrization MoszkvaF1c.tex 51

Exercise Prove that symetrization does not produce new complete
graphs: if the original graph did not contain Kℓ, the new one will neither.

NN

Exercise Prove the degree-majorization theorem, using symmetrization.

EM

Exercise (Bondy) Prove the Bollobás-Thomason- Erdős-T. Sós

theorem, using symmetrization. Bo

Exercise Is it true that if a graph does not contain C4 and you

symmetrize, the new graph will neither contain a C4? Sy
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Examples: MoszkvaF1c.tex 52

Prove that each triangle-free graph can be turned into a bipartite
one deleting at most n2/25 edges.

The construction shows that this is
sharp if true.
Partial results: Erdős-Faudree-
Pach-Spencer

Erdős-Győri-Sim.
Győri
Füredi
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Erdős-Sós conjecture MoszkvaErdSosTrees.tex 53

ex(n,Tk) ≤
1

2
(k − 1)n.

Ajtai-Komlós-Sim.-Szemerédi: True if k > k0.
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Importance of Decomposition MoszDecompZ.tex 54

This determines the real error terms in our theorems. E.g., if M is
the family of decomposition graphs.

e(Tn,p) + ex(n/p,M) ≤ ex(n,L) ≤ e(Tn,p) + c · ex(n/p,M)

for any c > p, and n large.

Exercise What is the decomposition class of Kp+1? D1

Exercise What is the decomposition class of the octahedron graph

K3(2, 2, 2)? More generally, of K (p, q, r)? D2

Exercise What is the decomposition class of the Dodecahedron graph

D20? And of the icosahedron graph I12? D1
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The corresponding theorems MoszDecompZ.tex 55

Definition

e is color-critical edge if χ(L− e) < χ(L).

Theorem (Critical edge, (Sim.))

If χ(L) = p + 1 and L contains a color-critical edge, then Tn,p is
the (only) extremal for L, for n > n1.

+ Erdős

Complete graphs
Odd cycles
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Dodecahedron Theorem (Sim.) MoszDecompZ.tex 56

3

s−1K

C

C

C

1

2

Dodecahedron: D20 H(n, d , s)
K5

H(n, 2, 6)

For D20, H(n, 2, 6) is the (only) extremal
graph for n > n0.

(H(n, 2, 6) cannot contain a D20 since one can
delete 5 points of H(n, 2, 6) to get a bipartite
graph but one cannot delete 5 points from D20

to make it bipartite.)
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Example 2: the Icosahedron MoszDecompZ.tex 57

2

1

3

1

2

4

3

3

1

4

2

4

A

B

nIf B contains a P , then G   contains6
an icosahedron

The decomposition class is: P6.
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Cube-reduction MoszkvaF1d.tex 58

Theorem (Cube, Erdős-Sim.)

ex(n,Q3) = O(n8/5).

New Proofs: Pinchasi-Sharir, Füredi, . . .
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General definition of L(t): MoszkvaF1d.tex 59

Take an arbitrary bipartite graph L and K (t, t). 2-color
them!

join each vertex of K (t, t) to each vertex of L of the
opposite color

K(t,t)L

L(t)

Theorem (Reduction, Erdős-Sim.)

Fix a bipartite L and an integer t.
If ex(n, L) = n2−α and L(t) is defined as above then
ex(n, L(t)) ≤ n2−β for

1

β
− 1

α
= t.
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Examples MoszkvaF1d.tex 60

The ES reduction included many (most?) of the earlier upper bounds on
bipartite L. Deleting an edge e of L, denote by L− e the resulting graph.

Exercise Deduce the KST theorem from the Reduction Theorem. A

Exercise Show that ex(n,Q8 − e) = O(n3/2). B

Exercise Show that ex(n,K2(p, p)− e) = O(n2−(1/p)). C

Open Problem: Pr3

Find a lower bound for ex(n,Q8), better than cn3/2.
Conjectured: ex(n,Q8) > cn8/5.
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How to get ex(n,Q8) = O(n8/5)? MoszkvaF1d.tex 61

Q8 = C6(1). Apply
ex(n,C6) = O(n2−(2/3)) with α = 2/3,
t = 1
Use the Reduction Thm:

1

β
− 1

α
= t.

Now 1
β − 1

α = 1. So 1
β = 1 + 3

2 = 5
2 . Hence 2− β = 2− 2

5 = 8
5
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What is left out? MoszkvaF1d.tex 62

The graph F11 below is full of C4’s.

w
Erdős conjectured that ex(n,F11) = O(n3/2). The methods known tose
days did not give this. Füredi proved the conjecture. → Fur11CCA

The general definition: In F1+k+(kℓ)
w is joined to k vertices x1, . . . , xk ,

and
(

k
ℓ

)

further vertices are joined to each ℓ-tuple xi1 . . . xiℓ .
F11 = F1+4+(42)

.
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Bondy-Simonovits MoszBondySim.tex 63

Theorem (Even Cycle: C2k)

ex(n,C2k) = O(n1+(1/k)).

More explicitly:

Theorem

Even Cycle: C2k). ex(n,C2k) ≤ c1kn
1+(1/k).

Conjecture (Sharpness)

Is this sharp, at least in the exponent? The simplest unknown case
is C8,

It is sharp for C4,C6, C10

Could you reduce k in c1kn
1+(1/k)?
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Sketch of the proof: MoszBondySim.tex 64

Lemma

If D is the average degree in Gn, then Gn contains a subgraph Gm

with

dmin(Gm) ≥
1

2
D and m ≥ 1

2
D.

Exercise Can you improve this lemma? Im

So we may assume that Gn is bipartite and regular.
Assume also that it does not contain shorter cycles either.
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Sketch of the proof: Expansion MoszBondySim.tex 65

Start with cheating: girth > 2k :
The ith level contains at least D i

different points.
D i < n, i = 1, 2, . . . k .

So D < n1/k .
e(Gn) ≤ cDn ≤ 1

2n
1+1/k .

We still have the difficulty that the shorter cycles cannot be trivially eliminated.
methods to overcome this:

Bondy-Simonovits and → BondySim

Faudree-Simonovits → FaudreeSim
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Both proofs use Expansion: MoszBondySim.tex 66

x is a fixed vertex, Si is the i th level, we need that

|Si+1|
|Si |

> cL · dmin(Gn) for i = 1, . . . , k .
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Faudree-Simonovits method: MoszBondySim.tex 67

This gives more: ex(n,Θk,ℓ) = O(n1+(1/k)).

x

Rich
Poo

r

Θ4,5

k path of length t
joining x and y
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An Erdős problem: Compactness? MoszkvaF1.tex 68

We know that if Gn is bipartite, C4-free, then

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2).

We have seen that there are C4-free graphs Gn with

e(Gn) ≈
1

2
n3/2 + o(n3/2).

Conjecture (Erdős Pr4 )

Is it true that if K3,C4 6⊆ Gn then

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2) ?

This does not hold for hypergraphs (Balogh) or for geometric graphs
(Tardos)
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Erdős-Sim., C5-compactness: MoszkvaF1.tex 69

If C5,C4 6⊆ Gn then → ErdSimComp

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2).

Unfortunately, this is much weaker than the conjecture on C3,C4:
excluding a C5 is a much more restrictive condition.
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Erdős-Gallai: MoszkvaF1.tex 70

ex(n,Pk) ≤
1

2
(k − 2)n.

Kk− Kk−k−K

Kr
1 1...1

Faudree-Schelp
Kopylov
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Erdős-T. Sós: MoszkvaF1.tex 71

Conjecture (Extremal number of the trees)

For any tree Tk ,
ex(n,Tk) ≤ 1

2 (k − 2)n.

Motivation: True for the two extreme cases: path and star.
fight for 1

2
Partial results

Theorem (Andrew McLennan)

The Erdős-Sós conjecture holds for trees of diameter 4, (2003)

Theorem (Ajtai-Komlós-Sim.-Szemerédi)

If k > k0 then true:

ex(n,Tk) ≤
1

2
(k − 2)n.
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Which type of methods? MoszkvaF1.tex 72

Stability Method
Double counting, Cauchy-Schwartz
— Lovász-Szegedy, Hatami-Norine
Random Graphs
Finite Geometries:
— Klein, Reiman, Erdős-Rényi-Sós

Erdős: ex(n,C3, . . . ,C2k) > cn1+
1
k

Eigenvalue questions / technique
— Guiduli, Babai, Nikiforov . . . and many others?
Szemerédi Regularity Lemma
Quasi-randomness
— Simonovits-Sós
Generalized quasi-randomness, Lovász-Sós-. . .
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Lower bounds for degenerate cases MoszkvaF1.tex 73

Why is the random method weak?

Why is the Lenz construction important?

Finite geometries

Commutative algebra method
Kollár-Rónyai-Szabó
Alon-Rónyai-Szabó
Margulis-Lubotzky-Phillips-Sarnak method → Margu

→ LubPhilSar

Lazebnik-Ustimenko-Woldar
Even cycle-extremal graphs
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Rational exponents? MoszkvaF1.tex 74

Conjecture (Rational exponents, Erdős-Sim.)

Given a bipartite graph L, is it true that for suitable α ∈ [0, 1)
there is a cL > 0 for which

ex(n, L)

n1+α
→ cL > 0 ?

Or, at least, is it true that for suitable α ∈ [0, 1) there exist a
cL > 0 and a c∗L > 0 for which

c∗1 ≤ ex(n, L)

n1+α
≤ cL ?
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The Universe MoszkvaF1.tex 75

Extremal problems can be asked (and are asked) for many other
object types.

Mostly simple graphs
Digraphs → Brown-Harary, Brown, Erdős, Simonovits

Multigraphs → Brown-Harary, Brown, Erdős, Simonovits

Hypergraphs → Turán, . . .

Geometric graph → Pach, Tóth, Tardos

Integers → Erdős,Sidon,Szemerédi,. . .

groups
other structures
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The general problem MoszkvaF1.tex 76

Given a universe, and a structure A with two (natural parameters)
n and e on its objects G .
Given a property P.

ex(n,P) = max
n(G)=n

e(G ).

Determine ex(n,P) and
describe the EXTREMAL STRUCTURES
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Examples: Hypergraphs, . . . MoszkvaF1.tex 77

We return to this later.
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Examples: Multigraphs, Digraphs, . . . MoszkvaF1.tex 78

Brown-Harary: bounded multiplicity: r

Brown-Erdős-Sim. → BrownSimDM

r = 2s: digraph problems and multigraph problems seem to be
equivalent:

– each multigraph problem can easily be reduced to digraph
problems

– and we do not know digraph problems that are really more
difficult than some corresponding multigraph problem
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Examples: Numbers, . . . MoszkvaF1.tex 79

Tomsk
Sidon sequences

Let rk(n) denote the maximum m such that there are m
integers a1, . . . , am ∈ [1, n] without k-term arithmetic
progression.

Theorem ( Szemerédi Theorem)

For any fixed k rk(n) = o(n) as n → ∞.

History (simplified):
K. F. Roth: r3(n) = o(n)
Szemerédi
Fürstenberg: Ergodic proof
Fürstenberg-Katznelson: Higher dimension
Polynomial extension, Hales-Jewett extension
Gowers: much more effective
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Title2.tex 80

Extremal hypergraph graph theory,

Miklos Simonovits

Moscow, 2015
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Hypergraph extremal problems MoszkHypergr.tex 81

3-uniform hypergraphs: H = (V ,H)
χ(H): the minimum number of colors needed to have in each
triple 2 or 3 colors.

Bipartite 3-uniform hypergraphs:

The edges intersect both classes
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Three important hypergraph cases MoszkHypergr.tex 82

1

d

a

bc x

xx2 3

Complete 4-graph, || Fano configuration, || octahedron graph
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The famous Turán conjecture MoszkHypergr.tex 83

Conjecture (Turán)

The following structure is the (? asymptotically) extremal

structure for K
(3)
4 :

For K
(3)
5 one conjectured extremal graph is just the above

“complete bipartite” one!
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Two important theorems MoszkHypergr.tex 84

Theorem (Kővári-T. Sós-Turán)

Let 2 ≤ a ≤ b be fixed integers. Then

ex(n,K (a, b)) ≤ 1

2
a
√
b − 1n2−

1
a +

1

2
an.

→ KovSosTur

a

b

Theorem (Erdős)

ex(n,K
(r)
r (m, . . . ,m)) = O(nr−(1/mr−1)).
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How to apply this? MoszkHypergr.tex 85

Call a hypergraph extremal problem (for k-uniform hypergraphs)
degenerate if

ex(n,L) = o(nk).
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Degenerate hypergraph problems MoszkHypergr.tex 86

Exercise Prove that the problem of L is degenerate iff it can be
k-colored so at each edge meats each of the k colors. XX
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The T. Sós conjecture MoszkHypergr.tex 87

Conjecture (V. T. Sós)

Partition n > n0 vertices into two classes A and B with
||A| − |B || ≤ 1 and take all the triples intersecting both A and B.
The obtained 3-uniform hypergraph is extremal for F .

The conjectured extremal graphs: B(X ,X )
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Füredi-Kündgen Theorem MoszkHypergr.tex 88

If Mn is an arbitrary multigraph (without restriction on the edge
multiplicities, except that they are nonnegative) and all the 4-vertex
subgraphs of Mn have at most 20 edges, then

e(Mm) ≤ 3

(

n

2

)

+ O(n).

→ FureKund

Theorem (de Caen and Füredi)

→ FureCaen

ex(n,F) =
3

4

(

n

3

)

+ O(n2).
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The Fano-extremal graphs MoszkHypergr.tex 89

Main theorem. If H is a triple system on n > n1 vertices not
containing F and of maximum cardinality, then χ(H) = 2.

=⇒ ex3(n,F) =

(

n

3

)

−
(⌊n/2⌋

3

)

−
(⌈n/2⌉

3

)

.

2
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MoszkHypergr.tex 90

Remark

The same result was proved independently, in a fairly similar
way, by

Peter Keevash and Benny Sudakov → KeeSud .

Theorem (Stability)

There exist a γ2 > 0 and an n2 such that:
If F 6⊆ H and

deg(x) >

(

3

4
− γ2

)(

n

2

)

for each x ∈ V (H),

then H is bipartite, H ⊆ H(X ,X ). → FureSimFano
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Many thanks for your attention.
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