Title1.tex

Extremal graph theory, Introduction

Miklós Simonovits

Moscow, 2015

- Surveys Introduc1.tex
 - My homepage: www.renyi.hu/~miki
 - Erdős homepage: www.renyi.hu/~p_erdos
 - The homepage of Alon, Füredi, ...

Alon: Tools from higher algebra, in : "Handbook of Combinatorics", R.L. Graham, M. Grötschel and L. Lovász, eds, North Holland (1995), Chapter 32, pp. 1749-1783.

Bollobás: Extremal Graph Theory (book)

Bollobás: B. Bollobás: Extremal graph theory, in: R. L. Graham,
 M. Grötschel, and L. Lovász (Eds .), Handbook of Combinatorics,
 Elsevier Science, Amsterdam, 1995, pp. 1231–1292.

Füredi-Simonovits: The history of degenerate (bipartite)
 extremal graph problems. Erdős centennial, 169–264, Bolyai Soc. Math.
 Stud., 25, Budapest, 2013.

Surveys (cont) Introduc1.tex

Simonovits: Extremal graph problems, Degenerate extremal problems and Supersaturated graphs, Progress in Graph Theory (Acad Press, ed. Bondy and Murty) (1984) 419–437.

Simonovits: Paul Erdős' influence on extremal graph theory. The mathematics of Paul Erdős, II, 148-192, Algorithms Combin., 14, Springer, Berlin, 1997. (Updated now, 2014 Arxiv)

M. Simonovits: How to solve a Turán type extremal graph problem? (linear decomposition), Contemporary trends in discrete mathematics (Stirin Castle, 1997), pp. 283–305, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, 1999.

- Keevash
- Kühn-Osthus
- Sohayakawa
- Schacht

These sources were chosen to suit to my lectures, many other very good sources are left out.

Introduction Introduc1.tex

Extremal graph theory and Ramsey theory were among the early and fast developing branches of 20th century graph theory. We shall survey the early development of Extremal Graph Theory, including some sharp theorems.

Strong interactions between these fields: Here everything influenced everything Algebraic Constructions Pseudo-random structures

General Notation Introduc1.tex

- $G_n, Z_{n,k}, T_{n,p}, H_{\nu}...$ the (first) subscript *n* will almost always denote the number of vertices.
- $K_p = \text{complete graph on } p$ vertices,
- **9** $P_k / C_k = \text{path} / \text{cycle on } k \text{ vertices.}$
- **9** $\delta(x)$ is the degree of the vertex x.

•
$$v(G) / e(G) = #$$
 of vertices / edges,

- **9** $\chi(G)$ = the chromatic number of G.
- **9** N(x) = set of neighbours of the vertex x, and
- G[X] = the subgraph of G induced by X.
- e(X, Y) = # of edges between X and Y.

Special notation Introduc1.tex

Turán type extremal problems for simple (?) graphs

Sample graph L, L
 ex(n, L) = extremal number = max e(G_n).
 if L∈L
 if L∈L
 if L∈L

 EX(n, L) = extremal graphs.
 T_{n,p} = Turán graph, p-chromatic having most edges.

The Turán Graph

Application in combin. number theory MOSTOMSZK.tex

Erdős (1938): $\rightarrow \text{ErdTomsk}$ Maximum how many integers $a_i \in [1, n]$ can be found under the condition: $a_i a_j \neq a_k a_\ell$, unless $\{i, j\} = \{k, \ell\}$?

This lead ERDŐS to prove:

```
ex(n, C_4) \leq cn\sqrt{n}.
```

The first finite geometric construction to prove the lower bound (ESZTER KLEIN)

First "attack": MosTomszk.tex

The primes between 1 and *n* satisfy Erdős' condition.

Can we conjecture $g(n) \approx \pi(n) \approx \frac{n}{\log n}$?

YES!

Proof idea: If we can produce each non-prome $m \in [1, n]$ as a product:

$$m = xy$$
, where $x \in X$, $y \in Y$,

then

$$g(n) \leq \pi(n) + \operatorname{ex}_B(X, Y; C_4).$$

where $e_{x_B}(U, V; L)$ denotes the maximum number of edges in a subgraph of G(U, V) without containing an L.

The number theoretical Lemma: MosTomszk.tex

Consider only integers. Let $\mathcal{P} = \text{primes}$,

$$\mathcal{B}:=[1, n^{2/3}] \bigcup [n^{2/3}, n] \cap \mathcal{P}$$
 and $\mathcal{D}:=[1, n^{2/3}]$

Lemma (Erdős, 1938) $[1, n] \subseteq \mathcal{B} \cdot \mathcal{D} = (\mathcal{B}_1 \cdot \mathcal{D}) \cup (\mathcal{B}_2 \cdot \mathcal{D}).$

Lemma (Erdős, 1938)

Representing each $a_i = b_i d_i$, the obtained bipartite graph has no C_4 .

$$egin{aligned} &e(G(\mathcal{B}_1,\mathcal{D}))\leq 3m\sqrt{m}=3n.\ \mathcal{B}_2 ext{ is joined only to } [1,n^{1/3}]:\ &e(G(\mathcal{B}_2,\mathcal{D}))\leq \pi(n)+h^2\ &=\pi(n)+n^{2/3}. \end{aligned}$$

→ KovSosTur

One of the important extremal graph theorems is that of Kővári, T. Sós and Turán, \rightarrow KovSosTur

Theorem (Kővári–T. Sós–Turán,

Let $K_{a,b}$ denote the complete bipartite graph with a and b vertices in its color-classes. Then

$$\mathbf{ex}(n, \mathbf{K}_{\mathsf{a}, \mathsf{b}}) \leq \frac{1}{2}\sqrt[a]{b-1} \cdot n^{2-(1/a)} + O(n).$$

We use this theorem with $a \leq b$, since that way we get a better estimate.

Conjecture

The above upper bound is sharp: For every $b \ge a > 0$,

 $\mathbf{ex}(n, \mathbf{K}_{\mathsf{a}, \mathsf{b}}) > c_{\mathsf{a}, \mathsf{b}} n^{2-(1/\mathsf{a})} + O(n).$

Is the exponent 2 - (1/a) sharp? MosDegener1.tex 11

Conjecture (KST is Sharp)

For every integers a, b,

$$\mathbf{ex}(n, K(a, b)) > c_{a,b} n^{2-1/a}.$$

Known for a = 2 and a = 3: ERDŐS, RÉNYI, V. T. SÓS, W. G. BROWN Random methods: Finite geometric constructions

 $\rightarrow \boxed{\text{ErdRenyiSos}}$ $\rightarrow \boxed{\text{BrownThom}}$ $\rightarrow \boxed{\text{ErdRenyiEvol}}$

$$\mathsf{ex}(n,\mathsf{K}(a,b)) > c_a n^{2-\frac{1}{a}-\frac{1}{b}}.$$

Füredi on $K_2(3,3)$:

Kollár-Rónyai-Szabó: b > a!.

Alon-Rónyai-Szabó: b > (a - 1)! .

The Brown construction is sharp. Commutative Algebra constr.

Pr1

Missing lower bounds: Constructions needed

• "Random constructions" do not seem to give the right order of magnitude when \mathcal{L} is finite

We do not even know if

Unknown: MosDegener1.tex

 $\frac{\mathbf{ex}(n,K(4,4))}{n^{5/3}}\to\infty.$

Partial reason for the bad behaviour: Lenz Construction Problems, Exercises MoszUnitDist.tex

Exercise Let the vertices of a graph be points in \mathbb{E}^2 and join two points by an edge if their distance is 1. Show that this graph contains no K(2,3).

Exercise Let the vertices of a graph be points in \mathbb{E}^3 and join two points by an edge if their distance is 1. Show that this graph contains no K(3,3).

Exercise If we take *n* points of general position in the *d*-dimensional Euclidean space (i.e., no *d* of them belong to a d - 1-dimensional affine subspace) and join two of them if their distance is 1, then the resulting graph G_n can not contain K_{d+2} .

Exercise If a_1, \ldots, a_p and b_1, \ldots, b_q are points in \mathbb{E}^d and all the pairwise distances $\rho(a_i, b_j) = 1$, then the two affine subspaces defined by them are either orthogonal to each other or one of them reduces to one point.

Problems, Exercises, cont. MoszUnitDist.tex

Exercise Show that if we join two points in \mathbb{E}^4 when their distance is 1, then the resulting graph contains a $\mathcal{K}(\infty,\infty)$.

Exercise Let v = v(L). Prove that if we put more than $n^{1-(1/v)}$ edges into some class of $T_{n,p}$ then the resulting graph contains L. Can you sharpen this statement?

Exercise (Petty's theorem) If we have *n* points in \mathbb{E}^d with an arbitrary metric $\rho(x, t)$ and its "unit distance graph" contains a K_p then $p \leq 2^d$. (Sharp for the *d*-dimensional cube and the ℓ_1 -metric.)

Erdős on unit distances MoszUnitDist.tex

15

Many of the problems in the area are connected with the following beautiful and famous conjecture, motivated by some grid constructions.

Conjecture (P. Erdős)

For every $\varepsilon > 0$ there exists an $n_0(\varepsilon)$ such that if $n > n_0(\varepsilon)$ and G_n is the Unit Distance Graph of a set of n points in \mathbb{E}^2 then

 $e(G_n) < n^{1+\varepsilon}.$

Erdős-Stone-Simonovits thms

The cut lemma BiparLower.tex

Lemma

Erdős triviality Each G_n contains a bipartite subgraph H_n with $e(H_n) > \frac{1}{2}e(G_n)$.

Two proofs. Generalization

Why is the random method weak? BiparLower.tex 17

Let
$$\chi(L) = 2$$
, $v := v(L)$, $e = e(L)$.

• The simple Random method (threshold) gives an *L*-free graph G_n with $cn^{2-(v/e)}$ edges. For C_{2k} this is too weak.

Improved method (first moment):

$$cn^{2-\frac{v-2}{e-1}}$$

For C_{2k} this yields

$$cn^{2-\frac{2k-2}{2k-1}} = cn^{1+\frac{1}{2k-1}}.$$

Conjectured:

 $\mathbf{ex}(n,C_{2k})>cn^{1+\frac{1}{k}}.$

Random method, General Case: BiparLower.tex

18

General Lower Bound

If a finite $\boldsymbol{\mathcal{L}}$ does not contain trees (or forests), then for some constants

$$c = c_{\mathcal{L}} > 0$$
, $\alpha = \alpha_{\mathcal{L}} > 0$

 $ex(n, \mathcal{L}) > cn^{1+\alpha}.$

Proof (Sketch).

- Discard the non-bipartite L's.
- Fix a large $k = k(\mathcal{L})$. (E.g., $k = \max v(L)$.)
- We know $ex(n, \{C_4, ..., C_{2k}\}) > cn^{2-\frac{\nu-2}{e-1}}$.
- Since each $L \in \mathcal{L}$ contains some $C_{2\ell}$ $(\ell \leq k)$,

 $\mathbf{ex}(n,\mathcal{L}) \geq \mathbf{ex}(n,C_4,\ldots,C_{2k}) > cn^{1+\frac{1}{2k-1}}.$

Constructions using finite geometries BiparLower.tex 19

 $p \approx \sqrt{n} = \text{prime } (n = p^2)$ Vertices of the graph F_n are pairs: Edges: (a, b) is joined to (x, y) if $ac + bx = 1 \mod p$.

Geometry in the constructions: the neighbourhood is a straight line and two such nighbourhoods intersect in ≤ 1 vertex.

 \implies loops to be deleted most degrees are around \sqrt{n} :

 $e(F_n) \approx \frac{1}{2}n\sqrt{n}$

No $C_4 \subseteq F_n$

Finite geometries: Brown construction BiparLower.tex

20

21

The above methods do not work for K(4, 4).

The first missing case BiparLower.tex

We do not even know if

 $\frac{\mathbf{ex}(n, K_2(4, 4))}{\mathbf{ex}(n, K_2(3, 3))} \to \infty.$

One reason for the difficulty: Lenz construction:

 \mathbb{E}^4 contains two circles in two orthogonal planes:

$$C_1 = \{x^2 + y^2 = \frac{1}{2}, \ z = 0, \ w = 0\} \text{ and } C_2 = \{z^2 + w^2 = \frac{1}{2}, \ x = 0, \ y = 0\}$$

and each point of C_1 has distance 1 from each point of C_2 : the unit distance graph contains a $K_2(\infty, \infty)$.

Theorem (Erdős–Simonovits, Cube Theorem)

Let Q_8 denote the cube graph defined by the vertices and edges of a 3-dimensional cube. Then

 $ex(n, Q_8) = O(n^{8/5}).$

Exponents? MosDegenerate2.tex

Conjecture (Erdős and Simonovits, Rational exponents)

For any finite family \mathcal{L} of graphs, if there is a bipartite $L \in \mathcal{L}$, then there exist a rational $\alpha \in [0, 1)$ and a c > 0 such that

$$rac{\mathsf{ex}(n,\mathcal{L})}{n^{1+lpha}} o c.$$

Classification of extremal graph problems and lower bound constructions MoszkvaFla.tex 24

- The asymptotic structure of extremal graphs
- Degenerate extremal graph problems:
 - $-\mathcal{L}$ contains a bipartite L:
 - $-\operatorname{ex}(n,\mathcal{L})=o(n^2).$
- Lower bounds using random graphs and finite geometries:
 - Here random methods are weak
 - Finite geometry sometimes gives sharp results.

Erdős-Stone-Simonovits thms

Methods

Hypergraphs

The Erdős-Stone theorem (1946) MoszkvaFla.tex 25

$$\mathbf{ex}(n, K_{p+1}(t, \ldots, t)) = \mathbf{ex}(n, K_{p+1}) + o(n^2)$$

Motivation from topology

26

General asymptotics MoszkvaFla.tex

So the asymptotics depends only on the

minimum chromatic number

Erdős-Stone-Sim. thm MoszkvaFla.tex

$$\mathbf{ex}(n,\mathcal{L}) = \mathbf{ex}(n,K_{p+1}) + o(n^2).$$

How to prove this from Erdős-Stone?

- pick $L \in \mathcal{L}$ with $\chi(L) = p + 1$.
- pick t with $L \subseteq K_{p+1}(t, \ldots, t)$.

- apply Erdős-Stone:

$$ex(n, \mathcal{L}) \geq e(T_{n,p})$$

but

$$\mathbf{ex}(n,\mathcal{L}) \leq \mathbf{ex}(n,L) \leq \mathbf{ex}(n,K_{p+1}(t,\ldots,t))$$

 $\leq \mathbf{e}(T_{n,p}) + \varepsilon n^2.$

Classification of extremal problems MoszkvaFla.tex 28

ø degenerate: *L* contains a bipartite *L*

• strongly degenerate: $\mathcal{T}_{
u} \in \mathcal{M}(\mathcal{L})$

where \mathcal{M} is the decomposition family.

29

Many central theorems

Main Line: MoszkvaFla.tex

assert that for ordinary graphs the general situation is almost the same as for K_{p+1} .

Put

$$p:=\min_{L\in\mathcal{L}}\chi(L)-1.$$

- The extremal graphs S_n are very similar to $T_{n,p}$.
- the almost extremal graphs are also very similar to $T_{n,p}$.

The meaning of "VERY SIMILAR": MOSZKVAFIA.TEX 30

- One can delete and add $o(n^2)$ edges of an extremal graph S_n to get a $T_{n,p}$.
- One can delete o(n²) edges of an extremal graph to get a p-chromatic graph.

Stability of the class sizes MoszkvaFla.tex

Exercise Among all the *n*-vertex *p*-chromatic graphs $T_{n,p}$ is the (only) graph maximizing $e(T_{n,p})$.

Exercise (Stability) If $\chi(G_n) = p$ and

$$e(G_n) = e(T_{n,p}) - s$$

then in a *p*-colouring of G_n , the size of the *i*th colour-class,

$$\left|n_i-\frac{n}{p}\right| < c\sqrt{s+1}.$$

Exercise Prove that if n_i is the size of the i^{th} class of $T_{n,p}$ and G_n is *p*-chromatic with class sizes m_1, \ldots, m_p , and if $s_i := |n_i - m_i|$, then

$$e(G_n) \leq e(T_{n,p}) - \sum {s_i \choose 2}.$$

Prove the assertion of the previous exercise from this.

Tp2

Extremal graphs MoszkvaFla.tex

The "metric" $\rho(G_n, H_n)$ is the minimum number of edges to change to get from G_n a graph isomorphic to H_n .

Notation.

EX(\mathbf{n} , \mathcal{L}): set of extremal graphs for \mathcal{L} .

Theorem (Erdős-Sim., 1966)

Put

$$p := \min_{\boldsymbol{L} \in \boldsymbol{\mathcal{L}}} \chi(\boldsymbol{L}) - 1.$$

If $S_n \in \mathbf{EX}(\mathbf{n}, \mathcal{L})$, then

 $\rho(T_{n,p}, S_n) = o(n^2).$

Product conjecture MoszkvaFla.tex

Theorem 1 separates the cases p = 1 and p > 1:

$$ex(n, \mathcal{L}) = o(n^2) \iff p = p(\mathcal{L}) = 1$$
 $p = 1$: degenerate extremal graph problems

Conjecture (Sim.) If $ex(n, \mathcal{L}) > e(T_{n,p}) + n \log n$

and $S_n \in \mathbf{EX}(\mathbf{n}, \mathcal{L})$, then S_n can be obtained from a $K_p(n_1, \ldots, n_p)$ only by adding edges.

This would reduce the general case to degenerate extremal graph problems:

The product conjecture, Reduction MoszkvaFla.tex

Definition

Given the vertex-disjoint graphs H_1, \ldots, H_p , their product $\prod_{i=1}^{p} H_{n_i}$ is the graph H_n obtained by joining all the vertices of H_{n_i} to all vertices of H_{n_i} , for all $1 \le i < j \le p$.

Exercise Prove that if $\prod_{i=1}^{p} H_{n_i}$ is extremal for \mathcal{L} then H_{n_1} is extremal for some \mathcal{M}_1 . (Hint: Prove this first for p = 1.) Redu

Definition (Decomposition)

M is a decomposition graph for \mathcal{L} if some $L \in \mathcal{L}$ can be p + 1-colored so that the first two colors span an M^* containing M. $\mathcal{M} = \mathcal{M}(\mathcal{L})$ is the family of decomposition graphs of \mathcal{L} .

Exercise Prove that if $\prod_{i=1}^{p} H_{n_i}$ is extremal for \mathcal{L} then H_{n_i} is extremal for some $\mathcal{M}_i \subseteq \mathcal{M}$ and $p(\mathcal{M}) = 1$: the problem of \mathcal{M} is degenerate. Redu2

35

Example: Octahedron Theorem MoszkvaF1a.tex

Theorem (Erdős-Sim.)

For O_6 , the extremal graphs S_n are "products": $U_m \otimes W_{n-m}$ where U_m is extremal for C_4 and W_{n-m} is extremal for P_3 . for $n > n_0$. \rightarrow ErdSimOcta

EXTREMAL = PRODUCT

Decomposition decides the error terms MoszkvaFla.tex

36

Definition (Decomposition, alternative def.)

For a given \mathcal{L} , $\mathcal{M} := \mathcal{M}(\mathcal{L})$, \mathcal{M} is the family of all those graphs M for which there is an $L \in \mathcal{L}$ and a t = t(L) such that $L \subseteq M \otimes K_{p-1}(t, \ldots, t)$. We call \mathcal{M} the decomposition family of \mathcal{L} .

If B contains a C_4 then G_n contains an octahedron: K(3,3,3).

The product conjecture, II. MoszkvaFla.tex

Conjecture (Product)

If no p-chromatic $L \in \mathcal{L}$ can be p + 1-colored so that the first two color classes span a tree (or a forest) then all (or at least one of) the extremal graphs are products of p subgraphs of size $\approx \frac{n}{p}$.

Structural stability MoszkvaF1b.tex

Erdős-Sim. Theorem.

Put

$$p:=\min_{\boldsymbol{L}\in\boldsymbol{\mathcal{L}}}\chi(\boldsymbol{L})-1.$$

For every $\varepsilon > 0$ there is a $\delta > 0$ such that if $L \not\subseteq G_n$ for any $L \in \mathcal{L}$ and

$$e(G_n) \ge \left(1-\frac{1}{p}\right) \binom{n}{2} - \delta n^2,$$

then

 $\rho(G_n, T_{n,p}) \leq \varepsilon n^2$

Structural stability: o(.) form MoszkvaF1b.tex

39

Erdős-Sim, Theorem Put $p := \min_{L \in \mathcal{L}} \chi(L) - 1.$ If G_n is almost extremal: It is *L*-free, and $e(G_n) \ge \left(1 - \frac{1}{p}\right) {n \choose 2} - o(n^2),$ then $\rho(G_n, T_{n,n}) = o(n^2).$

Corollary

The almost extremal graphs are almost-p-colorable

Erdős-Stone-Simonovits thms

Methods

Hypergraphs

Improved error terms, depending on \mathcal{M} .

MoszkvaF1b.tex

40

Erdős-Sim. Theorem. Put $p := \min_{L \in \mathcal{L}} \chi(L) - 1.$ Let $\mathcal{M} = \mathcal{M}(\mathcal{L})$ be the decomposition family. Let $ex(n, \mathcal{M}) = O(n^{2-\gamma})$. Then, if G_n is almost extremal: It is \mathcal{L} -free, and $e(G_n) \ge \left(1 - \frac{1}{p}\right) {n \choose 2} - O(n^{2-\gamma}),$

then we can delete $O(n^{2-\gamma})$ edges from G_n to get a *p*-chromatic graph.

Remark

For extremal graphs $\rho(S_n, T_{n,p}) = O(n^{2-\gamma})$.

Applicable and gives also exact results MoszkvaF1b.tex

41

Examples:

Octahedron. Icosahedron, Dodecahedron, Petersen graph, Grötzsch

In all these cases the stability theorem yields exact structure for $n > n_0$.

42

Original proof of Turán's thm MoszkvaF1b.tex

We show the uniqueness

This "splitting off" method can be used to prove the structural stability and many other results. However, there we split of, say a large but fixed $K_p(M, \ldots, M)$.

... and why do we like it? x

Zykov's proof, 1949 MoszZykovProof.tex

Assume $deg(x) \ge deg(y)$.

43

Erdős-Stone-Simonovits thms

Methods

Zykov's proof, 1949. MoszZykovProof.tex

Lemma. If $G_n \not\supseteq K_\ell$ and we symmetrize, the resulting graph will neither contain a K_ℓ .

We replace N(x) by N(y).

- Algorithmic proof
- Applicable in many cases
- Equivalent with Motzkin-Straus

How to use this? MoszZykovProof.tex

We can use a parallel symmetrization.

• = max degree

Uniqueness?

• Füredi proved the stability for K_{p+1} , analyzing this proof: If there are many edges among the nonneighbours of the base x_i then we gain a lot.

Other directions MoszkvaF1c.tex

- Prove exact results for special cases
- Prove good estimates for the bipartite case: p = 1
- Clarify the situation for digraphs
- Prove reasonable results for hypergraphs

Investigate fields where the problems have other forms, yet they are strongly related to these results.

Examples: 1. Critical edge MoszkvaF1c.tex

Theorem (Critical edge)

If $\chi(L) = p + 1$ and L contains a color-critical edge, then $T_{n,p}$ is the (only) extremal for L, for $n > n_1$. [If and only if]

Sim., (Erdős)

Complete graphs Odd cycles

Grötzsch graph

47

Examples: 2. A digraph theorem MoszkvaFlc.tex

48

We have to assume an upper bound s on the multiplicity. (Otherwise we may have arbitrary many edges without having a $K_{3.}$) Let s = 1.

$$\mathbf{ex}(n,L) = 2\mathbf{ex}(n,K_3) \qquad (n > n_0?)$$

Many extremal graphs: We can combine arbitrary many oriented double Turán graph by joining them by single arcs.

Erdős-Stone-Simonovits thms

Methods

Hypergraphs

Example 3. The famous Turán conjecture

MoszkvaF1c.tex

49

Consider 3-uniform hypergraphs.

Conjecture (Turán)

The following structure (on the left) is the (? asymptotically) extremal structure for $K_4^{(3)}$:

Examples: Degree Majorization MoszkvaFlc.tex

50

Erdős

For every K_{p+1} -free G_n there is a *p*-chromatic H_n with

 $d_H(v_i) \geq d_G(v_i).$

(I.e the degrees in the new graph are at least as large as originally.) BOLLOBÁS-THOMASON, ERDŐS-T. SÓS If $e(G_n) > e(T_{n,p})$ edges, then G_n has a vertex v with $e(G[N(v)]) \ge ex(d(v), K_n).$

(I.e the neighbourhood has enough edges to ensure a $K_{p.}$) Both generalize the Turán thm.

Application of symmetrization MoszkvaFlc.tex

Exercise Prove that symetrization does not produce new complete graphs: if the original graph did not contain K_{ℓ} , the new one will neither.

Exercise Prove the degree-majorization theorem, using symmetrization.

Exercise (BONDY) Prove the Bollobás-Thomason- Erdős-T. Sós theorem, using symmetrization.

Exercise Is it true that if a graph does not contain C_4 and you symmetrize, the new graph will neither contain a C_4 ?

Bo

Examples: MoszkvaF1c.tex

Prove that each triangle-free graph can be turned into a bipartite one deleting at most $n^2/25$ edges.

The construction shows that this is sharp if true. Partial results: ERDŐS-FAUDREE-PACH-SPENCER

Erdős-Győri-Sim. Győri Füredi

53

Erdős-Sós conjecture MoszkvaErdSosTrees.tex

$$\mathbf{ex}(n,T_k) \leq \frac{1}{2}(k-1)n.$$

AJTAI-KOMLÓS-SIM.-SZEMERÉDI: True if $k > k_0$.

54

Importance of Decomposition MoszDecompZ.tex

This determines the real error terms in our theorems. E.g., if \mathcal{M} is the family of decomposition graphs.

 $e(T_{n,p}) + \mathbf{ex}(n/p, \mathcal{M}) \leq \mathbf{ex}(n, \mathcal{L}) \leq e(T_{n,p}) + c \cdot \mathbf{ex}(n/p, \mathcal{M})$

for any c > p, and n large.

Exercise What is the decomposition class of K_{p+1} ?

Exercise What is the decomposition class of the octahedron graph $K_3(2,2,2)$? More generally, of K(p,q,r)?

Exercise What is the decomposition class of the Dodecahedron graph D_{20} ? And of the icosahedron graph I_{12} ?

The corresponding theorems MoszDecompZ.tex

55

Definition

e is color-critical edge if $\chi(L-e) < \chi(L)$.

Theorem (Critical edge, (Sim.))

If $\chi(L) = p + 1$ and L contains a color-critical edge, then $T_{n,p}$ is the (only) extremal for L, for $n > n_1$.

+ Erdős

Complete graphs Odd cycles

Dodecahedron Theorem (Sim.)

MoszDecompZ.tex

C,

с,

 K_{s-1} H(n, d, s)Dodecahedron: D_{20} K_5 For D_{20} , H(n, 2, 6) is the (only) extremal graph for $n > n_0$. H(n, 2, 6) cannot contain a D_{20} since one can delete 5 points of H(n, 2, 6) to get a bipartite graph but one cannot delete 5 points from D_{20}

to make it bipartite.)

 $H(n \ 2 \ 6)$

Example 2: the Icosahedron MoszDecompZ.tex

If B contains a P_{6} then G_{n} contains an icosahedron

The decomposition class is: P_6 .

Erdős-Stone-Simonovits thms

Cube-reduction MoszkvaF1d.tex

Methods

Theorem (Cube, Erdős-Sim.) $ex(n, Q_3) = O(n^{8/5}).$

Hypergraphs

58

Erdős-Stone-Simonovits thms

Methods

Hypergraphs

General definition of L(t): MoszkvaFld.tex

• Take an arbitrary bipartite graph L and K(t, t). 2-color them!

• join each vertex of K(t, t) to each vertex of L of the opposite color

Theorem (Reduction, Erdős-Sim.)

Fix a bipartite L and an integer t. If $ex(n, L) = n^{2-\alpha}$ and L(t) is defined as above then $ex(n, L(t)) \le n^{2-\beta}$ for $\frac{1}{\beta} - \frac{1}{\alpha} = t.$

С

Pr3

The ES reduction included many (most?) of the earlier upper bounds on bipartite *L*. Deleting an edge *e* of *L*, denote by L - e the resulting graph. **Exercise** Deduce the KST theorem from the Reduction Theorem. A **Exercise** Show that $ex(n, Q_8 - e) = O(n^{3/2})$.

Exercise Show that $ex(n, K_2(p, p) - e) = O(n^{2-(1/p)})$.

Open Problem:

Find a lower bound for $ex(n, Q_8)$, better than $cn^{3/2}$. Conjectured: $ex(n, Q_8) > cn^{8/5}$.

How to get $ex(n, Q_8) = O(n^{8/5})$? MoszkvaFld.tex

61

I. Г $Q_8 = C_6(1)$. Apply $ex(n, C_6) = O(n^{2-(2/3)})$ with $\alpha = 2/3$, t = 1Use the Reduction Thm:

$$\frac{1}{\beta} - \frac{1}{\alpha} = t.$$

Now
$$\frac{1}{\beta} - \frac{1}{\alpha} = 1$$
. So $\frac{1}{\beta} = 1 + \frac{3}{2} = \frac{5}{2}$. Hence $2 - \beta = 2 - \frac{2}{5} = \frac{8}{5}$

What is left out? MoszkvaFld.tex

Erdős conjectured that $ex(n, F_{11}) = O(n^{3/2})$. The methods known tose days did not give this. Füredi proved the conjecture. \rightarrow Fur11CCA

The general definition: In $F_{1+k+\binom{k}{\ell}}$ *w* is joined to *k* vertices x_1, \ldots, x_k , and $\binom{k}{\ell}$ further vertices are joined to each ℓ -tuple $x_{i_1} \ldots x_{i_\ell}$. $F_{11} = F_{1+4+\binom{4}{2}}$. Bondy-Simonovits MoszBondySim.tex

Theorem (Even Cycle: C_{2k})

 $ex(n, C_{2k}) = O(n^{1+(1/k)}).$

More explicitly:

Theorem

Even Cycle: C_{2k}). $ex(n, C_{2k}) \le c_1 k n^{1+(1/k)}$.

Conjecture (Sharpness)

Is this sharp, at least in the exponent? The simplest unknown case is C_8 ,

It is sharp for C_4, C_6, C_{10}

Could you reduce k in $c_1 k n^{1+(1/k)}$?

Sketch of the proof: MoszBondySim.tex

Lemma

If D is the average degree in G_n , then G_n contains a subgraph G_m with

$$d_{\min}(G_m) \geq rac{1}{2}D$$
 and $m \geq rac{1}{2}D$.

Exercise Can you improve this lemma?

lm

• So we may assume that G_n is bipartite and regular. Assume also that it does not contain shorter cycles either.

65

Sketch of the proof: Expansion MoszBondySim.tex

We still have the difficulty that the shorter cycles cannot be trivially eliminated methods to overcome this:

- BONDY-SIMONOVITS and
- Faudree-Simonovits

\rightarrow BondySim	
------------------------	--

Both proofs use Expansion: MoszBondySim.tex

66

x is a fixed vertex, S_i is the i^{th} level, we need that

$$\frac{|S_{i+1}|}{|S_i|} > c_L \cdot d_{\min}(G_n) \text{ for } i = 1, \dots, k.$$

Erdős-Stone-Simonovits thms

Methods

Faudree-Simonovits method: MoszBondySim.tex

67

An Erdős problem: Compactness? MoszkvaF1.tex 68

We know that if G_n is bipartite, C_4 -free, then

$$e(G_n) \leq \frac{1}{2\sqrt{2}}n^{3/2} + o(n^{3/2}).$$

We have seen that there are C_4 -free graphs G_n with

$$e(G_n) \approx \frac{1}{2}n^{3/2} + o(n^{3/2}).$$

Conjecture (Erdős

Is it true that if $K_3, C_4 \not\subseteq G_n$ then

$$e(G_n) \leq \frac{1}{2\sqrt{2}}n^{3/2} + o(n^{3/2})$$
?

This does not hold for hypergraphs $({\rm Balogh})\,$ or for geometric graphs $({\rm Tardos})\,$

Pr4

Erdős-Sim., C₅-compactness: MoszkvaF1.tex

Unfortunately, this is much weaker than the conjecture on C_3 , C_4 : excluding a C_5 is a much more restrictive condition.

70

Erdős-Gallai: MoszkvaF1.tex

Faudree-Schelp Kopylov

Conjecture (Extremal number of the trees) For any tree T_k ,

```
\mathbf{ex}(n, T_k) \leq \frac{1}{2}(k-2)n.
```

Motivation: True for the two extreme cases: path and star.

- fight for $\frac{1}{2}$
 - Partial results

Theorem (Andrew McLennan)

Erdős-T. Sós: MoszkvaF1.tex

The Erdős-Sós conjecture holds for trees of diameter 4,

(2003)

Theorem (Ajtai-Komlós-Sim.-Szemerédi)

If $k > k_0$ then true:

$$\mathbf{ex}(n,T_k) \leq \frac{1}{2}(k-2)n.$$

72

Which type of methods? MoszkvaF1.tex

Stability Method

- Double counting, Cauchy-Schwartz
 Lovász-Szegedy, Hatami-Norine
- Random Graphs
- Finite Geometries:
 - Klein, Reiman, Erdős-Rényi-Sós
- Erdős: $ex(n, C_3, \ldots, C_{2k}) > cn^{1+\frac{1}{k}}$
- Eigenvalue questions / technique
 Guiduli, Babai, Nikiforov ... and many others?
- Szemerédi Regularity Lemma
- Quasi-randomness
 - Simonovits-Sós
- Generalized quasi-randomness, Lovász-Sós-...

Lower bounds for degenerate cases MoszkvaF1.tex 73

- Why is the random method weak?
- Why is the Lenz construction important?
- Finite geometries
- Commutative algebra method
- Kollár-Rónyai-Szabó
- Alon-Rónyai-Szabó
- Margulis-Lubotzky-Phillips-Sarnak method

- Lazebnik-Ustimenko-Woldar
- Even cycle-extremal graphs

Rational exponents? MoszkvaF1.tex

Conjecture (Rational exponents, Erdős-Sim.)

Given a bipartite graph L, is it true that for suitable $\alpha \in [0, 1)$ there is a $c_L > 0$ for which

$$rac{\mathsf{ex}(n,L)}{n^{1+lpha}} o c_L > 0$$
 ?

Or, at least, is it true that for suitable $\alpha \in [0, 1)$ *there exist a* $c_L > 0$ *and a* $c_l^* > 0$ *for which*

$$c_1^* \leq rac{\mathbf{ex}(n,L)}{n^{1+lpha}} \leq c_L$$
 ?

The Universe MoszkvaF1.tex

Extremal problems can be asked (and are asked) for many other object types.

- Mostly simple graphs
- Digraphs
- Multigraphs
- Hypergraphs
- Geometric graph
- Integers
- groups
- other structures

The general problem MoszkvaF1.tex

Given a **universe**, and a structure A with two (natural parameters) n and e on its objects G. Given a property \mathcal{P} .

$$\mathbf{ex}(n,\mathcal{P}) = \max_{n(G)=n} e(G).$$

Determine ex(n, P) and describe the **EXTREMAL STRUCTURES**

Erdős-Stone-Simonovits thms

Methods

Hypergraphs

Examples: Hypergraphs, ... MoszkvaF1.tex

77

We return to this later.

Examples: Multigraphs, Digraphs, ... MoszkvaF1.tex 78

9

- BROWN-HARARY: bounded multiplicity: r
- BROWN-ERDŐS-SIM.

→ BrownSimDM

r = 2s: digraph problems and multigraph problems seem to be equivalent:

- each multigraph problem can easily be reduced to digraph problems

- and we do not know digraph problems that are really more difficult than some corresponding multigraph problem

Examples: Numbers, ... MoszkvaF1.tex

- Tomsk
- Sidon sequences
 - Let $r_k(n)$ denote the maximum m such that there are m integers $a_1, \ldots, a_m \in [1, n]$ without k-term arithmetic progression.

Theorem (Szemerédi Theorem)

For any fixed $k r_k(n) = o(n)$ as $n \to \infty$.

History (simplified):

- **9** K. F. Roth: $r_3(n) = o(n)$
- Szemerédi
- FÜRSTENBERG: Ergodic proof
- FÜRSTENBERG-KATZNELSON: Higher dimension
- Polynomial extension, HALES-JEWETT extension
- GOWERS: much more effective

Title2.tex

Extremal hypergraph graph theory,

Miklos Simonovits

Moscow, 2015

Hypergraph extremal problems MoszkHypergr.tex

3-uniform hypergraphs: $\mathcal{H} = (V, \mathcal{H})$ $\chi(\mathcal{H})$: the minimum number of colors needed to have in each triple 2 or 3 colors.

Bipartite 3-uniform hypergraphs:

The edges intersect both classes

Three important hypergraph cases MoszkHypergr.tex 82

The famous Turán conjecture MoszkHypergr.tex

Conjecture (Turán)

The following structure is the (? asymptotically) extremal structure for $K_4^{(3)}$:

For $K_5^{(3)}$ one conjectured extremal graph is just the above "complete bipartite" one!

Erdős-Stone-Simonovits thms

Methods

84

Two important theorems MoszkHypergr.tex

Theorem (Erdős)

$$ex(n, K_r^{(r)}(m, ..., m)) = O(n^{r-(1/m^{r-1})}).$$

Erdős-Stone-Simonovits thms

How to apply this? MoszkHypergr.tex

Call a hypergraph extremal problem (for k-uniform hypergraphs) degenerate if

$$\mathbf{ex}(n,\mathcal{L})=o(n^k).$$

Degenerate hypergraph problems MoszkHypergr.tex 86

Exercise Prove that the problem of L is degenerate iff it can be k-colored so at each edge meats each of the k colors.

The T. Sós conjecture MoszkHypergr.tex

Conjecture (V. T. Sós)

Partition $n > n_0$ vertices into two classes A and B with $||A| - |B|| \le 1$ and take all the triples intersecting both A and B. The obtained 3-uniform hypergraph is extremal for \mathcal{F} .

The conjectured extremal graphs: $\mathcal{B}(X,\overline{X})$

Füredi-Kündgen Theorem MoszkHypergr.tex

88

If M_n is an arbitrary multigraph (without restriction on the edge multiplicities, except that they are nonnegative) and all the 4-vertex subgraphs of M_n have at most 20 edges, then

$$e(M_m) \leq 3\binom{n}{2} + O(n).$$

→ FureKund

89

The Fano-extremal graphs MoszkHypergr.tex

Main theorem. If \mathcal{H} is a triple system on $n > n_1$ vertices not containing \mathcal{F} and of maximum cardinality, then $\chi(\mathcal{H}) = 2$.

$$\implies \qquad \operatorname{ex}_3(n,\mathcal{F}) = \binom{n}{3} - \binom{\lfloor n/2 \rfloor}{3} - \binom{\lceil n/2 \rceil}{3}.$$

Theorem (Stability)

There exist a $\gamma_2 > 0$ and an n_2 such that: If $\mathcal{F} \not\subseteq \mathcal{H}$ and

$$\deg(x) > \left(\frac{3}{4} - \gamma_2\right) \binom{n}{2}$$
 for each $x \in V(\mathcal{H})$.

then \mathcal{H} is bipartite, $\mathcal{H} \subseteq \mathcal{H}(X, \overline{X})$.

→ FureSimFano

Many thanks for your attention.